문서분류에 있어서 분류속도의 향상이 중요한 연구과제가 되고 있다. 최근 개발된 자질값투표 기법은 문서자동분류 문제에 대해서 매우 빠른 속도를 가졌지만, 분류정확도는 만족스럽지 못하다. 이 논문에서는 새로운 자질선정 기법인 문서측 자질선정 기법을 제안하고, 이를 자질값투표 기법에 적용해 보았다. 문서측 자질선정은 일반적인 분류자질선정과 달리 학습집단이 아닌 분류대상 문서의 자질 중 일부만을 선택하여 분류에 이용하는 방식이다. 문서측 자질선정을 적용한 실험에서는, 간단하고 빠른 자질값투표 분류기로 SVM 분류기만큼 좋은 성능을 얻을 수 있었다.
계량기 숫자 인식은 일반적으로 사용되고 있는 아날로그 계량기에 카메라를 부착하여, 검침 시 숫자 계기판 영상을 전송받고, 그 영상으로부터 숫자를 추출 및 인식하는 기술이다. 계량기 숫자 인식에서는 카메라의 설치 상태 및 기타 환경적인 요인들로 인해 숫자 계기판 영상의 일관성 있는 취득이 어렵게 된다. 본 논문에서는 숫자 인식에 악영향을 미치는, 취득 영상의 상태 변화를 보정해주기 위해 잡영 제거 및 윤곽보존 숫자강화를 제안하였다. 잡영 제거를 위해 잡영을 분포 위치에 따라서 세 가지 타입으로 나누었으며, 각 타입별로 잡영 제거를 하였다. 윤곽보존 숫자강화 과정에서는 일반적인 이진화 기법이 가지는 테두리 정보손실을 최소화할 수 있도록, 숫자 테두리의 명도를 보존하면서 숫자 중심부분의 밝기를 강화시켰다. 전처리 전/후의 인식률 비교 실험을 위해 SVM(Support Vector Machines)을 사용하였으며, 학습 데이터 1,409장과 조명 상태를 달리하여 취득한 1,782의 테스트 데이터를 실험 데이터로 사용하였다. 실험 결과, 81.09%라는 성능 향상을 확인하였으며 이는 제안한 전처리 기법이 조명으로 인한 데이터의 상태 변화 문제를 해결해줌으로써 인식 성능 향상에 크게 기여한다는 것을 입증해준다.
결정 트리는 큰 가설 공간을 가지고 있어 유연하고 강인한 성능을 지닐 수 있다. 하지만 결정트리가 학습 데이터에 지나치게 적응되는 경향이 있다. 학습데이터에 과도하게 적응되는 경향을 없애기 위해 몇몇 가지치기 알고리즘이 개발되었다. 하지만, 데이터가 속성 축에 평행하지 않아서 오는 공간 낭비의 문제는 이러한 방법으로 해결할 수 없다. 따라서 본 논문에서는 다변수 노드를 사용한 선형 분류기를 이용하여 이러한 문제점을 해결하는 방법을 제시하였으며, 결정트리의 성능을 높이고자 지지 벡터 머신을 도입하였다(SVMDT). 본 논문에서 제시한 알고리즘은 세 가지 부분으로 이루어졌다. 첫째로, 각 노드에서 사용할 속성을 선택하는 부분과 둘째로, ID3를 이 목적에 맞게 바꾼 알고리즘과 마지막으로 기본적인 형태의 가지치기 알고리즘을 개발하였다. UCI 데이터 셋을 이용하여 OC1, C4.5, SVM과 비교한 결과, SVMDT는 개선된 결과를 보였다.
Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.192-198
/
2023
Cyberbullying is a growing problem among adolescents and can have serious psychological and emotional consequences for the victims. In recent years, machine learning techniques have emerged as promising approach for detecting instances of cyberbullying in online communication. This research paper focuses on developing a machine learning models that are able to detect cyberbullying including support vector machines, naïve bayes, and random forests. The study uses a dataset of real-world examples of cyberbullying collected from Twitter and extracts features that represents the ideational metafunction, then evaluates the performance of each algorithm before and after considering the theory of systemic functional linguistics in terms of precision, recall, and F1-score. The result indicates that all three algorithms are effective at detecting cyberbullying with 92% for naïve bayes and an accuracy of 93% for both SVM and random forests. However, the study also highlights the challenges of accurately detecting cyberbullying, particularly given the nuanced and context-dependent nature of online communication. This paper concludes by discussing the implications of these findings for future research and the development of practical tool for cyberbullying prevention and intervention.
Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.
Van-Thanh Pham;Hye-Sook Son;Cheol-Ho Kim;Yun Jang;Seung-Eock Kim
Steel and Composite Structures
/
제46권6호
/
pp.731-744
/
2023
Vehicle load information is an important role in operating and ensuring the structural health of cable-stayed bridges. In this regard, an efficient and economic method is proposed for vehicle load detection based on the observed cable tension and vehicle position using a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), a robust program for modeling and considering both geometric and material nonlinearities of bridge structures subjected to vehicle load with low computational costs. With the superiority of GNN, the proposed model is demonstrated to precisely capture complex nonlinear correlations between the input features and vehicle load in the output. Four popular machine learning methods including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machines (SVM) are refereed in a comparison. A case study of a cable-stayed bridge with the typical truck is considered to evaluate the model's performance. The results demonstrate that the GNN-based model provides high accuracy and efficiency in prediction with satisfactory correlation coefficients, efficient determination values, and very small errors; and is a novel approach for vehicle load detection with the input data of the existing monitoring system.
Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.
The aim of this paper is to present the methodology for hand tracking and hand gesture recognition. The detected hand and gesture can be used to implement the non-contact mouse. We had developed a MP3 player using this technology controlling the computer instead of mouse. In this algorithm, we first do a pre-processing to every frame which including lighting compensation and background filtration to reducing the adverse impact on correctness of hand tracking and hand gesture recognition. Secondly, YCbCr skin-color likelihood algorithm is used to detecting the hand area. Then, we used Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to tracking hand. As the formula-based region of interest is square, the hand is closer to rectangular. We have improved the formula of the search window to get a much suitable search window for hand. And then, Support Vector Machines (SVM) algorithm is used for hand gesture recognition. For training the system, we collected 1500 hand gesture pictures of 5 hand gestures. Finally we have performed extensive experiment on a Windows XP system to evaluate the efficiency of the proposed scheme. The hand tracking correct rate is 96% and the hand gestures average correct rate is 95%.
단일염기다형성은 인간 게놈 구조 연구의 중요한 도구이다. 대량의 유전자 표현형 데이터에서의 군집 분석은 생물학적으로 연관이 있는 유전자 군을 발견하거나 유전자간 상호작용 네트워크를 생성하는데 유용하다. 본 논문에서는 엔트로피 거리를 기반으로 계층적 군집 분석 방법을 사용하여 천식환자군과 정상대조군의 군집을 형성하고 비교하였고 5개짜리 군집에서 두 군의 의미 있는 차이점이 나타남을 보였다. 천식환자군의 각 군집에서의 대표 SNP들의 조합의 질병 예측 정확도를 지지벡터기계를 이용하여 측정하여, 천식의 두 유형을 진단할 수 있는 최상의 조합을 찾았다. 최상의 조합은 유전자 ALOX12에 있는 단일염기다형성을 포함한 5개로 구성된 모델이며 66.41%의 아스피린 내성 천식 질병에 대한 예측 정확도를 갖는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.