• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.032 seconds

An analysis of Speech Acts for Korean Using Support Vector Machines (지지벡터기계(Support Vector Machines)를 이용한 한국어 화행분석)

  • En Jongmin;Lee Songwook;Seo Jungyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.365-368
    • /
    • 2005
  • We propose a speech act analysis method for Korean dialogue using Support Vector Machines (SVM). We use a lexical form of a word, its part of speech (POS) tags, and bigrams of POS tags as sentence features and the contexts of the previous utterance as context features. We select informative features by Chi square statistics. After training SVM with the selected features, SVM classifiers determine the speech act of each utterance. In experiment, we acquired overall $90.54\%$ of accuracy with dialogue corpus for hotel reservation domain.

A Comparison Study on Back-Propagation Neural Network and Support Vector Machines for the Image Classification Problems (영상분류문제를 위한 역전파 신경망과 Support Vector Machines의 비교 연구)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1889-1893
    • /
    • 2008
  • This paper explores the classification performance of applying to support vector machines (SVMs) for the image classification problems. In this study, we extract the color, texture and shape features of natural images and compare the performance of image classification using each individual feature and integrated features. The experiment results show that classification accuracy on the basis of color feature is better than that based on texture and shape features and the results of the integrating features also provides a better and more robust performance than individual feature. In additions, we show that the proposed classifier of SVM based approach outperforms BPNN to corporate the image classification problems.

Hierarchical Text Categorization using Support Vector Machine (지지 벡터 기계를 이용한 계층적 문서 분류)

  • Yoon, Yong-Wook;Lee, Chang-Ki;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.7-13
    • /
    • 2003
  • 인터넷을 통해 생성, 전달되는 문서 량이 급격히 많아짐에 따라, 정보의 접근을 용이하게 하기 위한 문서의 자동 분류 기능이 절실히 요구되고 있다. SVM(Support Vector Machine)은 최근에 문서 분류에 널리 쓰이고 있는 기법으로 다른 분류기에 비하여 좋은 성능을 보여주고 있다. 하지만 SVM은 현재까지 주로 비 계층 평탄화(flat)된 분류 응용에 효과적으로 적용되어 왔다. 이와 달리 본 논문은 문서 분류에 있어서 최종 분류 class를 한번에 출력하는 비 계층 분류보다는, 비슷한 성질을 갖는 class의 집합을 계층적 구조로 묶어 분류하는 계층적 분류 기법이 보다 사람이 이해하기 쉽고 사용하기 편리하며 더 효과적이라는 것을 보이고, 실험을 통해 계층적 분류를 위한 효과적인 SVM분류기를 개발하여 비 계층 분류보다 좋은 분류 성능을 보여 줄 수 있음을 확인한다.

  • PDF

Long Term Prediction of Korean-U.S. Exchange Rate with LS-SVM Models

  • Hwang, Chang-Ha;Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.845-852
    • /
    • 2003
  • Forecasting exchange rate movements is a challenging task since exchange rates impact world economy and determine value of international investments. In particular, Korean-U.S. exchange rate behavior is very important because of strong Korean and U.S. trading relationship. Neural networks models have been used for short-term prediction of exchange rate movements. Least squares support vector machine (LS-SVM) is used widely in real-world regression tasks. This paper describes the use of LS-SVM for short-term and long-term prediction of Korean-U.S. exchange rate.

  • PDF

Fixed size LS-SVM for multiclassification problems of large data sets

  • Hwang, Hyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.561-567
    • /
    • 2010
  • Multiclassification is typically performed using voting scheme methods based on combining a set of binary classifications. In this paper we use multiclassification method with a hat matrix of least squares support vector machine (LS-SVM), which can be regarded as the revised one-against-all method. To tackle multiclass problems for large data, we use the $Nystr\ddot{o}m$ approximation and the quadratic Renyi entropy with estimation in the primal space such as used in xed size LS-SVM. For the selection of hyperparameters, generalized cross validation techniques are employed. Experimental results are then presented to indicate the performance of the proposed procedure.

Android-based Malware Detection Using SVM (SVM(Support Vector Machine)을 이용한 안드로이드 기반의 악성코드 탐지)

  • Kim, Ki-Hyun;Ham, Hyo-sik;Choi, Mi-Jung
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.771-773
    • /
    • 2013
  • 모바일 단말은 다양한 서비스와 컨텐츠를 지원하지만, 최근 모바일 악성코드의 급증으로 인하여 사용자에게 개인 정보 유출, 요금 과다 등의 피해를 초래하고 있다. 특히, 안드로이드 플랫폼은 오픈 플랫폼으로서 공격자들이 악성코드를 배포하기에 유리한 환경을 가지고 있어 시그니처/행위기반 분석방법을 통한 악성코드 탐지 연구가 활발히 진행되고 있다. 본 논문에서는 안드로이드 플랫폼에서 악성코드를 탐지하기 위한 Feature를 선정하였다. 또한 SVM(Support Vector Machine) 기계학습 알고리즘을 통하여 악성코드 탐지성능을 분석하고 우수성을 검증하였다.

SVM based Stock Price Forecasting Using Financial Statements (SVM 기반의 재무 정보를 이용한 주가 예측)

  • Heo, Junyoung;Yang, Jin Yong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • Machine learning is a technique for training computers to be used in classification or forecasting. Among the various types, support vector machine (SVM) is a fast and reliable machine learning mechanism. In this paper, we evaluate the stock price predictability of SVM based on financial statements, through a fundamental analysis predicting the stock price from the corporate intrinsic values. Corporate financial statements were used as the input for SVM. Based on the results, the rise or drop of the stock was predicted. The SVM results were compared with the forecasts of experts, as well as other machine learning methods such as ANN, decision tree and AdaBoost. SVM showed good predictive power while requiring less execution time than the other machine learning schemes.

A Note on Fuzzy Support Vector Classification

  • Lee, Sung-Ho;Hong, Dug-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.133-140
    • /
    • 2007
  • The support vector machine has been well developed as a powerful tool for solving classification problems. In many real world applications, each training point has a different effect on constructing classification rule. Lin and Wang (2002) proposed fuzzy support vector machines for this kind of classification problems, which assign fuzzy memberships to the input data and reformulate the support vector classification. In this paper another intuitive approach is proposed by using the fuzzy ${\alpha}-cut$ set. It will show us the trend of classification functions as ${\alpha}$ changes.

Terms Based Sentiment Classification for Online Review Using Support Vector Machine (Support Vector Machine을 이용한 온라인 리뷰의 용어기반 감성분류모형)

  • Lee, Taewon;Hong, Taeho
    • Information Systems Review
    • /
    • v.17 no.1
    • /
    • pp.49-64
    • /
    • 2015
  • Customer reviews which include subjective opinions for the product or service in online store have been generated rapidly and their influence on customers has become immense due to the widespread usage of SNS. In addition, a number of studies have focused on opinion mining to analyze the positive and negative opinions and get a better solution for customer support and sales. It is very important to select the key terms which reflected the customers' sentiment on the reviews for opinion mining. We proposed a document-level terms-based sentiment classification model by select in the optimal terms with part of speech tag. SVMs (Support vector machines) are utilized to build a predictor for opinion mining and we used the combination of POS tag and four terms extraction methods for the feature selection of SVM. To validate the proposed opinion mining model, we applied it to the customer reviews on Amazon. We eliminated the unmeaning terms known as the stopwords and extracted the useful terms by using part of speech tagging approach after crawling 80,000 reviews. The extracted terms gained from document frequency, TF-IDF, information gain, chi-squared statistic were ranked and 20 ranked terms were used to the feature of SVM model. Our experimental results show that the performance of SVM model with four POS tags is superior to the benchmarked model, which are built by extracting only adjective terms. In addition, the SVM model based on Chi-squared statistic for opinion mining shows the most superior performance among SVM models with 4 different kinds of terms extraction method. Our proposed opinion mining model is expected to improve customer service and gain competitive advantage in online store.

Survey on Nucleotide Encoding Techniques and SVM Kernel Design for Human Splice Site Prediction

  • Bari, A.T.M. Golam;Reaz, Mst. Rokeya;Choi, Ho-Jin;Jeong, Byeong-Soo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.4
    • /
    • pp.14.1-14.6
    • /
    • 2012
  • Splice site prediction in DNA sequence is a basic search problem for finding exon/intron and intron/exon boundaries. Removing introns and then joining the exons together forms the mRNA sequence. These sequences are the input of the translation process. It is a necessary step in the central dogma of molecular biology. The main task of splice site prediction is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT and AG ended sequences among those candidate sequences. In this paper, we survey research works on splice site prediction based on support vector machine (SVM). The basic difference between these research works is nucleotide encoding technique and SVM kernel selection. Some methods encode the DNA sequence in a sparse way whereas others encode in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is to classify them using its learning model. The accuracy of classification largely depends on the proper kernel selection for sequence data as well as a selection of kernel parameter. We observe each encoding technique and classify them according to their similarity. Then we discuss about kernel and their parameter selection. Our survey paper provides a basic understanding of encoding approaches and proper kernel selection of SVM for splice site prediction.