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A Note on Fuzzy Support Vector Classification*

Sungho Lee!) and Dug Hun Hong?

Abstract

The support vector machine has been well developed as a powerful tool
for solving classification problems. In many real world applications, each
training point has a different effect on constructing classification rule. Lin
and Wang (2002) proposed fuzzy support vector machines for this kind of
classification problems, which assign fuzzy memberships to the input data
and reformulate the support vector classification. In this paper another
intuitive approach is proposed by using the fuzzy a—cut set. It will show us
the trend of classification functions as « changes.
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1. Introduction

The support vector machine (SVM) is a tool for solving multidimensional
function estimation problems. It was developed in Russia in the sixties by Vapnik
and co-workers (Vapnik and Lerner, 1963; Vapnik and Chervonenkis, 1964). It
was initially designed to solve pattern recognition problems, where one selects
some (small) subset of the training data, called the support vectors, to find a
decision rule with good generalization ability. Later the support vector machine
was extended to regression and real-valued function estimation. The support
vector machine is a very powerful method in a wide variety of applications and
has been introduced as a powerful tool for solving classification problems (Vapnik,
1995, 1998; Gun, 1998; Scholkopf and Smola, 2002).

The support vector classification (SVC) algorithm maps the input data in R™
into a high dimensional feature space F with a dot product, i.e., ¢ : R™ — F
and finds the optimal hyperplane to maximize the margin between two classes
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in F. The optimization problem can be transformed into its corresponding dual
problem by using the Lagrangian multipliers and is reduced to a quadratic pro-
gramming problem formulated in terms of dot products in F'. Instead of evaluat-
ing the map, ¢ : R™ — F explicitly, a kernel function k(z,y) is used to compute
a dot product in feature space F, i.e., k(z,y) = (#(z), #(y)) and the solution to
the optimization problem is given by a function of support vectors.

In many real world classification problems, some training points are more
important than others and some are less meaningful. For example, some points
contaminated by errors or noises are less meaningful than others. Thus it is not
reasonable that those training points have the same weights as others. Lin and
Wang (2002) proposed fuzzy support vector machines for this kind of classification
problems. The proposed method assigns fuzzy memberships to the input data
and reformulates the support vector classification algorithm such that different
input data can make different contributions to the learning of decision function.
In this paper another intuitive approach is suggested by using the concept of
a—cut of fuzzy membership to solve this kind of classification problems. It will
use a—cut sets of the training points to find classification functions and hence
show us the trend of classification functions as « changes.

2. SVC and Fuzzy SVC

In this section we briefly review support vector classification (Cortes and
Vapnik, 1995; Vapnik, 1995, 1998; Gun, 1998; Schélkopf and Smola, 2002) and
fuzzy support vector classification proposed by Lin and Wang (2002).

Let {(zi,vi)lz: € R™,y; € {-1,1},i = 1,2,...,n} be a training set. The
main idea of support vector classification is to find a hyperplane, (w,z) + b =0,
to separate the two classes so that the margin (the distance between the hyper-
plane and the nearest point) is maximized. The optimization problem can be
constructed as follows:

Minimize ®(w,&) = %(w,w) + CZ&
=1

with constraints
yi((w,z:) +b) 2 1 =&, i=1,...,n,
51’20,'5:1,---,”, (21)

where C(> 0) is a constant and &, ...,&, are a measure of the misclassification
errors.
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The problem can be transformed into its dual problem by using the La-
grangian multipliers as follows:

Maximize Z o — 2 Z Z yzy]azaj Z4, xj)

=1 j=1

with constraints

OgaigC, i=1,...,’l’l,
n

Zaiyi=0-

i=1

In the case where a linear boundary is not appropriate the SVM maps the input
data in R™ into a high dimensional feature space F' with a dot product, i.e.,
¢ : R™ — F and finds the optimal hyperplane, (w, ¢(x))+b = 0, to maximize the
margin between two classes in F. The optimization problem can be constructed
as follows:

Minimize ®(w,§) = —;—(w, w) + CZ&.

with constraints

yi((w,qz‘)(a:i)) -l-b) >1 —fi, t=1,...,n,
&£>0,i=1,...,n. (2.2)

The problem can be transformed into its dual problem by using the Lagrangian
multipliers as follows:

n n

Zzyly]alaj ¢(z:), $(z;5))

z:l] 1

l\:)ln—l

Maximize W(a) = Z
=1

= Zaz - Zzyzy]aza] (L‘Z,IE])

1,—1_7 1

with constraints
0<e; £C,i=1,...,n,

n
Zaiyi =0
i=1
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where k(z;,z;) is a kernel function to compute a dot product in feature space
(see Vapnik, 1995).
The solution to this dual problem gives the classification function,

f(l‘) = Sign (Z aiy,-k(mi,x) + b) .

=1

The remained question is which functions k(z,y) correspond to a dot product
in some feature space F. Mercer theorem (1909) indicates that any continuous
symmetric function k(z,y) may be used as an admissible support vector kernel
(Mercer kernel) if it satisfies Mercer’s condition

// k(z,y)g(z)g(y)dzdy > 0 for all g € Ly(R™).

The fuzzy SVC method by Lin and Wang (2002) assigns a fuzzy membership s;
to each input point and reformulate the SVC algorithm. Let

{(x’iay’iasi)lxi € Rm:yl € {_1)1}10 <o<s < 171 - 1,2,...,77,}

be a training set such that the fuzzy membership s; is the attitude of the corre-
sponding point z; toward one class and is larger than sufficiently small member-
ship ¢ > 0. Then the optimization problem can be constructed as follows:

Minimize ®(w,§) = %(w,w) + Czsi&

i=1

with constraints

yillw,z;) +b) > 1-¢&,i=1,...,n,
&E>0,1=1,...,n, (2.3)

where C(> 0) is a constant and the term s;§; is regarded as a measure of error
with different weight in this model.

The problem can be also transformed into its dual problem by using the
Lagrangian multipliers as follows:

n n n
. 1
Maximize W(a)= E o= g E E Yiyj o0 (T, T5)
i=1 i=1 j=1
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with constraints

OSaiSSiC, i=1,...,n,

In the case where a linear boundary is not appropriate the optimization problem
can be constructed as before:

1 n
Minimize ®(w,§) = §(w, w) + C; si&i
with constraints

&>0,i=1,...,n. (2.4)

The problem can be also transformed into its dual problem by using the La-
grangian multipliers as follows:

" - 1~
Maximize W(a) = Z a; — 2 Z Zyiyjaiaj (p(zi), d(x5))
=1 i=1 j=1
n 1 n n
=Y ai— 3 > vyjuogk(zi, z5)
i=1 i=1 j=1

with constraints

0<aa; £8C,1i=1,...,n,

n
Z QY = 07
=1

3. Fuzzy SVC with a—cut sets

When each training point has a different effect on constructing a classification
function, the fuzzy support vector classification method was proposed by Lin and
Wang (2002) to find the rule as briefly described in section 2. In this section
another approach is proposed by using the fuzzy a—cut sets, which will show us
the trend for the classification function as o changes. Let

A={(zi,yi,8)|zi e R, y; € {-1,1},0< 5, < 1,i=1,...,n}
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be a training set. The fuzzy membership s; is the attitude of the corresponding
point z; toward one class as before. We define [A]%, a—cut set of A, as

[A]* = {(zs, ys, 83) |z eR™, g € {-1,1},0<a<s; < Li=1,...,n}.

For each a—cut set [A]* find a hyperplane, (w,z) + b = 0, to maximize the
margin between two classes. Then the model (2.3) in section 2 can be applied to
the optimization problem for each a—cut set. That is, for a—cut set [A]*

Minimize ®(w,§) = %(w,w) +Czsi€i

i=1
with constraints

yi((w,z;) +b) > 1-¢&;, i=1,...,n,
&>0i=1,...,n

In the case where a linear boundary is not appropriate, model (2.4) in section 2
can be used:

e .. 1 n
Minimize ®(w,§) = -2—(w, w)+C Z; si&;
1=
with constraints

ui((w, () +B) > 1— &, i =1,....n,
& >0,i=1,...,n.

A procedure for looking into the trend of classification functions is: (i) first choose
a lower bound o(< @), (ii) find a membership function suitable for the training
data set, (iii) construct classification functions from o = 0.9 to the smallest level
o with decreasing by 0.1 and investigate the trend for each classification function,

4. Numerical Study

In this section numerical illustrations for the results of FSVC with a—cut sets
are provided. The training data set D, for the comparison of results,

D = {(z1, T2i, %) | (%1, 725) € R%, 5 € {-1,1},i=1,...,40}
= {(=3.5,-2.5, 1), (~4.5,~2.0, ~1), (=5.5,~0.2, 1), ..., (3.5, —0.5, —1)}
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training points with s»0.6 and y=1
’ i N

& tralhing points with s>0.6 and y=-1

Figure 4.1: Classification function for the first membership function

pomex hull of tRining pointy with-e3g. Band y=1

T

sanvex hufl 6f traihing poitts with:s»0. 6 ahd y=-i

Figure 4.2: Classification functions for the second membership function

is similarly constructed based on Fig. 1 in Lin and Wang (2002). Membership
functions, which is used in Lin and Wang (2002), are considered. The membership
functions assign more weighting for recent points than past points:

ti —t1 \2
5= 1) =(1-0) (F=5) 4o
n
1-— tho —t
( 0)t1,+ nO 1’
th, — 11 th — 1

si = f(ti) =

where t; = 4,1 =1,...,40 and o = 0.1.
For the support vector classifications, Gunn’s program is used (see Gunn, 1998)
and C = 100, for all the classification functions in figure 4.1 and 4.2, is chosen so
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that svc line in figure 4.1 may be a possible optimal separating line. Of course,
C = 100 can’t be an optimal value to satisfy all the classification lines in any sense.
In experiments C = 100,90, ...,10,5,1 was applied to the model. The width of
the margin, 2/||w||, was increased from 0.627 to 0.905 and slopes of svc lines were
also changed a little bit. In figure 4.1 and 3.2 the point x; with y; = 1 is placed
as plus sign marker and the point z; with y; = —1 as diamond marker. Figure
4.1 shows classification functions for the first membership function using SVC,
FSVC, and FSVC with a—cut set (o = 0.5) and figure 4.2 shows classification
functions for the second membership function using SVC, FSVC, and FSVC with
a—cut set (a = 0.5). For this training data set three classification functions are
very similar but shows a trend among them.

5. Concluding Remarks

In this paper, for classification problems in which each point has different
effect on classification rule, fuzzy SVC with a—cut sets is proposed to look into
the trend for classification functions as « changes. Classification functions by
membership levels are considered to be able to give us informations about trend,
in what directions classifiers move as the figures in the above experiment indicate.
Numerical examples don’t show interesting facts, but it still give us valuable
informations for the trend of classification functions.
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