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Splice site prediction in DNA sequence is a basic search problem for finding exon/intron 
and intron/exon boundaries. Removing introns and then joining the exons together forms 
the mRNA sequence. These sequences are the input of the translation process. It is a neces-
sary step in the central dogma of molecular biology. The main task of splice site prediction 
is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT 
and AG ended sequences among those candidate sequences. In this paper, we survey re-
search works on splice site prediction based on support vector machine (SVM). The basic 
difference between these research works is nucleotide encoding technique and SVM kernel 
selection. Some methods encode the DNA sequence in a sparse way whereas others encode 
in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is 
to classify them using its learning model. The accuracy of classification largely depends on 
the proper kernel selection for sequence data as well as a selection of kernel parameter. We 
observe each encoding technique and classify them according to their similarity. Then we 
discuss about kernel and their parameter selection. Our survey paper provides a basic un-
derstanding of encoding approaches and proper kernel selection of SVM for splice site pre-
diction.
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INTRODUCTION

The basic gene structure for higher eukaryotes includes pro-
moter, start codons, introns, exons, and stop codons1. Of them, 
the exon sequences are coding region of the gene. The transla-
tion of protein requires removal of introns from DNA sequenc-
es. The process for intron removal is called DNA splicing. The 
name of the position where intron to exon or exon to intron oc-
curs is splicing site. The 5́  boundary or donor site of introns in 
most eukaryotes usually contains the di-nucleotide GT, while 
the 3́  boundary or acceptor site contains the di-nucleotide AG. 
This is called GT-AG rule2. Accurate prediction of splice sites is 
the very first step for a systematic study of eukaryotic genes. It 
has been recognized that accurate prediction of eukaryotic 
gene structure largely depends on the ability to pinpoint the ex-
act splice sites within a sequence3. The advances in sequencing 
technologies have resulted in a large amount of DNA sequence 
information and therefore the size of genetic and genomic da-
tabase has drastically increased. We cannot determine which 
regions of the gene would encode for protein unless different 
regions of the genome and their functions are characterized4. 
This is why, the annotation of the genome sequence within an 
acceptable timeframe is an important goal for the study of Bio-
informatics. Gene expression in eukaryotes starts with the tran-
scription of DNA sequences into pre-mRNA sequences, fol-
lowed by the processing of pre-mRNAs to mature mRNAs, and 
the translation of mRNAs to proteins. Splicing is one of the pri-
mary post-processing steps of pre-mRNAs in eukaryotes. 
  Since 1980s, many computational biotechnology has been 
applied for locating  gene-coding regions (exons). Several ma-
chine learning approaches have so far been introduced for the 
prediction of donor and acceptor splice sites and the secondary 
structure of proteins5,6. Here, we only focus on the support vec-
tor machine approach for finding splice site. The SVM method, 
which is a canonical machine learning approach, was initially 
proposed by Vapnik et al., is a very effective method for general 
purpose pattern recognition3,7-12. In this paper, we compare 
some research works on splice site prediction that use SVM for 
identifying true acceptor/donor sites and false acceptor/donor 
sites. The GT-AG rule of does not always hold2. So as discussed 
in, it is natural to model the prediction of splice sites4 as a bina-
ry classification problem, using DNA sequences with experi-
mentally confirmed splice sites as positive training examples 
and those DNA sequences with GT-AG structure but confirmed 
not to be real splice sites as negative training examples. 
  Successful recognition of splice junction sites of human DNA 
sequences was achieved via three machine learning approach-
es. Both unsupervised (Kohonen’s Self-Organizing Map, KSOM) 
and supervised (Back-propagation Neural Network, BNN; and 
Support Vector Machine, SVM) machine learning techniques 

were used for classifying sequences of the test set into one of 
the three categories: transition from exon to intron (E/I bound-
aries), transition from intron to exon (I/E boundaries), and no 
transition9. The performance of machine learning techniques 
have accuracy of the comparative as follows SVM > BNN >  
KSOM, suggesting that SVM is a robust method of identifying 
unknown splice sites. It is expected that the SVM can provide a 
powerful computational tool for predicting the splice junction 
sites of uncharacterized DNA. 
  This paper analyzes the research works on different encod-
ing approaches for splice site prediction using SVM and sug-
gests some coding techniques along with kernel selection for 
better prediction accuracies.

PROBLEM DEFINITION 

DNA Sequence
A deoxyribonucleic acid (DNA) is composed of four types of 
bases that are Adenine (A), Cytosine (C), guanine (G) and thy-
mine (T). So, a DNA sequence is a string containing those four 
alphabets. As for example AGCATACGTACTGAC is a DNA se-
quence.

The central dogma of molecular biology
The central dogma of molecular biology explains the transfer of 
sequential information in details. It states that such information 
cannot be transferred back from protein to either protein or nu-
cleic acid13. According to Marshal Nirenberg, the dogma can be 
defined as precisely “DNA makes RNA makes Protein”14. The 
schematic diagram of the central dogma4 is depicted in Figure 1.

Splice Junction Sites
DNA splice junction sites (Figure 2) are boundaries where 
splicing occurs and are found between the regions of DNA that 
code for gene products (exon) and those that do not (intron)15.
  The GT di-nucleotide is usually referred to as “donor” where-
as the AG di-nucleotide is known as “acceptor”16. The donor 
and acceptor are sketched17 in Figure 3.

Figure 1. Central dogma of molecular biology.
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Maximal Dependence Decomposition (MDD), Neural Net-
works (NN) and so on. These are summarized in the Table 1.
  The main goal of the above programs is to find intron/exon 
and exon/intron boundaries, not to find the gene structure. 
SPLICEVIEW is based on prediction of splice signals by classifi-
cation approaches (a set of consensus). Its two main assump-
tions are reflection of functional importance from higher fre-
quency of some nucleotides in definite site position and mutual 
dependence of nucleotides in different site positions. Its accu-
racy ranges from 95% to 97% of donor and 95% acceptor for dif-
ferent organisms. SPLICEPREDICTOR applied log linear mod-
els to find optimal combinations of splice site variables for the 
purpose of separating true splice sites. Inhomogeneous zero 
order Markov model per position indicates the probability that 
a given base appears at each position of the splice signal. This 
concept is also known as a so called position weight matrix 
(PWM). NNSPLICE and NETGENE2 optimized PWM weights 
by neural network (NN) method. The higher Markov model can 
be used to capture possible dependencies between adjacent 
positions of a splice signal. This is so called weight array model 
(WAM) and closely related to position-dependent codon fre-
quency model. Maximal dependence decomposition (MDD) 

Support Vector Machine
The SVM is a data driven method for solving bi-nominal classi-
fication tasks. Let a dataset T contains l instances of xi (i = 1, 
………….l) with each xi labeled as y+ or y- indicating a positive 
or negative instances respectively. The Linear SVM (LSVM) 
separates the two classes in T with a hyper plane in the feature 
space such that:

(A) The ‘largest’ possible fraction of instances of the same class 
is on the same side of the hyperplane, and
(B) The distance of either class from the hyperplane is maximal.

The prediction of LSVM for an unseen instance Z is 1 (classified 
as a positive instance) or -1 (classified as a negative instance), 
given by the decision function4

Prediction (z) = sign(W ∙ Z + b)  ----- (I)

The hyper plane is computed by maximizing a vector of La-
grance multipliers α in

  W(α) = ∑ l                                            l
                                    

i = 1 αi – 1/2 ∑ i,j = 1 αi αj yi yj K(xi,xj)  -----  (II)

Constrained to: 0 ≤ αi ≤ C and ∑
 
i = 1 αi yi = 0 Where C is a param-

eter set by the user to regulate thoutliers of outliers and noise, 
i.e., it defines the meaning of the word ‘largest’ in (A).
For the LSVM this function reduces to the following

W = ∑
 

i = 1 αi xi yi  -----  (III)
All xi for which α is not zero are called the support vectors. Typi-
cally the size of the set of support vectors is much smaller that l. 
  In this survey, we compare existing methods and also give 
further direction to improve encoding approaches as well as 
proper kernel functions and their parameter selection for splice 
site detection programs18. In there are lots of gene prediction 
programs which are based on Hidden Markov Model (HMM), 

l

l

Table 1. Splice site prediction program

Program Organism Method

GeneSplicer19 Arabidopsis, human HMM + MDD
NETPLANTGENE20

(http://www.cbs.dtu.dk/services/NetPGene/)
Arabidopsis NN

NETGENE221

(http://www.cbs.dtu.dk/services/NetGene2/)
Human, C.elegans, Arabidopsis NN + HMM

SPLICEVIEW22

(http://l25.itba.mi.cnr.it/~webgene/wwwspliceview.html)
Eukaryotes Score with consensus

NNSPLICE0.923

(http://www.fruitly.org/seq_tools/splice.html)
Drosophila, human or other NN

SPLICEPREDICTOR24,25

(http://bioinformatics.iastate.edu/cgi-bin/sp.cgi
Arabidopsis, maize Logitlinear models: (i) score with consensus; 

(ii) local composition
BCM-SPL
(http://www.softberry.com/berry.phtml; http://genomic.sanger.ac.uk/gf/gf.html)

Human, Drosophila, C.elegans, yeast, plant Linear discriminant analysis

Figure 3. Illustration of acceptor and donor sites.
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method captures the most significant dependencies between 
adjacent as well as non-adjacent positions. The Arabidopsis da-
tabase is used to evaluate GeneSplicer with NetGene2, NNSplice 
and SpliceView19. But GeneSplicer performed comparatively 
best alternative in each case in terms of accuracy and sensitivity.
  None of the above programs are based on SVM but SVM 
gives the higher accuracy. In SVM produced 99.09% accuracy 
whereas the other two methods KSOM (Kohonen’s Self Orga-
nizing Map) and BNN (Back-propagation Neural Network) esti-
mated 92.72% and 97.27% accuracy respectively9. Chao-Hsien 
Chu et al. showed that SVM out performed better than Naïve 
Bayes Classifier3. They used two data sets, Dsmall and Dlarge 
and applied their method. SVM gives better performance in 
terms of CPU time, F-measure and other performance metric. 
Recently Qingshan Jiang et al. used their new feature extraction 
method in HS3D (Homo Sapiens Splice Site Dataset) data set 
and compared their method (ECS_SVM) with other methods 
like weight matrix model 1 (WMM1) and the first order Markov 
model (MM1). Both models are based on BPNN and RBFN26. 
Their method with SVM shows better. The accuracy of those 
methods is summarized in Table 2. 
  By exploring past and recent works, we can conclude that 
support vector machine produces more accurate results to pre-
dict splice site than other machine learning approaches. Fur-
thermore, we investigated that different encoding approaches 
have different accuracy for splice site prediction. As a result, we 
scrutinized splice site prediction using SVM as well as the im-
portance of encoding mechanism to produce better result. 
Lastly, we described the impact of various kernel functions of 
SVM for further development in prediction result. 
  Most of the splice site predictor programs that use SVM as 

true and false splice site classifier use Figure 4 as a working flow 
for their main principle. 
  The training data are experimentally verified true and false 
splice site. The experiment is done in biotechnology lab. The 
different algorithm uses different encoding approaches to ex-
tract features from training data. Then SVM is trained with 
those features using various kernel functions. After learning 
phase, candidate data (unknown samples) are fed into SVM 
learner. Then SVM predicts result based on its learning. From 
the above diagram, we can easily say that the accuracy of these 
problems can be increased by improving two steps – ‘feature 
extraction by various encoding method’ and ‘SVM learner with 
various kernel functions’.
  In sparse encoding, each nucleotide represents a 4 bit vector. 
As for example, A is represented as 1000, T is 0001, C is 0100 
and G is 0010. FDTF stands for frequency distribution between 
true site and false site. This method represents each type of 
splice site in sparse encoding. Then makes a frequency distri-
bution table for the true and false site. After that, the difference 
of distribution between true and false sites are calculated. This 
difference is called FDTF. Baye’s mapping uses same frequency 
distribution as FDTF. This method uses concatenation  of the 
false site with true sites, not the difference. Codon is the combi-
nation of three nucleotides. There are 64 codons. The sequen-
tial information (Information gain) is combined with codon 
useage26.
  From the Table 3, we can conclude some facts. Firstly, orthog-
onal encoding is the best approach as data representation for 
SVM input. Because it gives more vicinity information among 
nucleotides and this approach is perfect for representing vector 
data. Though this type of coding requires more memory than 
MN and PN encoding, it extracts some more features of DNA 
sequences. Secondly, sparse encoding with FDTF or Baye’s 

Unknown
samples
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SVM learner with various  
kernel function

SVM  
learner 

SVM predictor

Result

Training data

Figure 4. Flow diagram for splice site prediction using SVM.

Table 2. Accuracy comparison between ECS_SVM and other methods

Splice site 
boundaries

WMM1-
BPNN

WMM1- 
RBFN

MM1-BPNN MM1-RBFN ECS_SVM

Exon/intron 0.895 0.893 0.927 0.930 0.948
Intron/Exon 0.880 0.878 0.925 0.921 0.937

Table 3. Research works on splice site prediction using SVM

Coding
Re-

search
Year Kernel Parameters

Accuracy

IE EI

Sparse Virapong9 2003 RBF C = 20.75,
Gama = 2-5

99.09 97.98

Ying-Fei3 2005 G�aussian, 
polynomial

S = 1, r = 1,
D = 4, Std = 20

93.74-
92.04

88.15-
88.69

Markov
  model

Baten17 2006 R�BF, poly, 
linear

NA 97-98 96-97

FDTF T.Li l1 2006 RBF NA 93.7 93.2
Baye’s
  mapping

Chu4 2006 L�inear, 
polynomial

d = 2,3
C = 150

86.6-
89.8

86.6-
89.8

Codon+ 
  sequential

Qingshan 
  jiang26

2012 M�ulticlass 
SVM

NA 93.7 94.8
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mapping can tell probability of each nucleotide in each specific 
position. This probability can help us to determine positions of 
GC-content of exon sequence. To find out the density of GC-
content is very important because GC-content of exon is typi-
cally higher than intron. Sparse encoding with FDTF has better 
accuracy than sparse encoding with Baye’s mapping. Baye’s 
mapping uses double length of candidate sequence to represent 
vector data than FDTF which is computationally expensive. In 
addition, SVM-kernels have also a great impact on accuracy. 
Most of the programs use linear, polynomial and Gaussian ker-
nel function for this type of classification.The parameter selec-
tion (C and gamma) of kernel function is also a heuristic ap-
proach for better performance. Finally, most of the research 
work thinks this problem as a binary classifier – true and false 
class. Basically, there is another class which has no transition 
like intron/exon and exon/intron. We can say this class as ‘no 
transition’ class. A new kernel design (l- mer content describing 
kernel, positional information kernel, etc.) for splice site predic-
tion with three class prediction can help to predict better results 
in future. Finally, TL = LL + RL rule is a brute force approach to 
deduce the best length of a candidate sequence as a splice site. 
Determination of LL and RL is also a trial and error method as 
like as the C and gamma selection of SVM kernel. A statistical 
approach to determine LL and RL can save time and effort of 
the researchers.

CONCLUSION

Different works use different types of encoding approaches for 
a DNA sequence. The encoded sequence acts as input to sup-
port vector machine. The performance of splice site prediction 
mostly depends on encoding approaches as long as the kernel 
and their parameter selection. In this survey, we discuss the en-
coding type of different research works and compare them.The 
better approaches for encoding should take care about infor-
mation retention and less memory allocation as well as better 
performance on splice site prediction.
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