• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.031 seconds

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Performance Enhancement of Marker Detection and Recognition using SVM and LDA (SVM과 LDA를 이용한 마커 검출 및 인식의 성능 향상)

  • Kang, Sun-Kyoung;So, In-Mi;Kim, Young-Un;Lee, Sang-Seol;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.923-933
    • /
    • 2007
  • In this paper, we present a method for performance enhancement of the marker detection system by using SVM(Support Vector Machine) and LDA(Linear Discriminant Analysis). It converts the input image to a binary image and extracts contours of objects in the binary image. After that, it approximates the contours to a list of line segments. It finds quadrangle by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted quadrangle into exact squares by using the warping technique and scale transformation. It extracts feature vectors from the square image by using principal component analysis. It then checks if the square image is a marker image or a non-marker image by using a SVM classifier. After that, it computes feature vectors by using LDA for the extracted marker images. And it calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the proposed method achieves enhancement of recognition rate with smaller feature vectors by using LDA and it can decrease false detection errors by using SVM.

  • PDF

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

Run-to-Run Fault Detection of Reactive Ion Etching Using Support Vector Machine (Support Vector Machine을 이용한 Reactive ion Etching의 Run-to-Run 오류검출 및 분석)

  • Park Young-Kook;Hong Sang-Jeen;Han Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.962-969
    • /
    • 2006
  • To address the importance of the process fault detection for productivity, support vector machines (SVMs) is employed to assist the decision to determine process faults in real-time. The reactive ion etching (RIE) tool data acquired from a production line consist of 59 variables, and each of them consists of 10 data points per second. Principal component analysis (PCA) is first performed to accommodate for real-time data processing by reducing the dimensionality or the data. SVMs for eleven steps or etching m are established with data acquired from baseline runs, and they are further verified with the data from controlled (acceptable) and perturbed (unacceptable) runs. Then, each SVM is further utilized for the fault detection purpose utilizing control limits which is well understood in statistical process control chart. Utilizing SVMs, fault detection of reactive ion etching process is demonstrated with zero false alarm rate of the controlled runs on a run to run basis.

Fault Detection of Reactive Ion Etching Using Time Series Support Vector Machine (Time Series Support Vector Machine을 이용한 Reactive Ion Etching의 오류검출 및 분석)

  • Park Young-Kook;Han Seung-Soo;Hong Sang-J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.247-250
    • /
    • 2006
  • Maximizing the productivity in reactive ion etching, early detection of process equipment anomaly became crucial in current high volume semiconductor manufacturing environment. To address the importance of the process fault detection for productivity, support vector machines (SVMs) is employed to assist the decision to determine process faults in real-time. SVMs for eleven steps of etching runs are established with data acquired from baseline runs, and they are further verified with the data from controlled (acceptable) and perturbed (unacceptable) runs. Then, each SVM is further utilized for the fault detection purpose utilizing control limits which is well understood in statistical process control chart. Utilizing SVMs, fault detection of reactive ion etching process is demonstrated with zero false alarm rate of the controlled runs on a run to run basis.

  • PDF

Abnormal Diagnostics of Vibration System using SVM (SVM기법을 이용한 진동계의 고장진단에 관한 연구)

  • Ko, Kwang-Won;Oh, Yong-Sul;Jung, Qeun-Young;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF

Multiple Discriminative DNNs for I-Vector Based Open-Set Language Recognition (I-벡터 기반 오픈세트 언어 인식을 위한 다중 판별 DNN)

  • Kang, Woo Hyun;Cho, Won Ik;Kang, Tae Gyoon;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.958-964
    • /
    • 2016
  • In this paper, we propose an i-vector based language recognition system to identify the spoken language of the speaker, which uses multiple discriminative deep neural network (DNN) models analogous to the multi-class support vector machine (SVM) classification system. The proposed model was trained and tested using the i-vectors included in the NIST 2015 i-vector Machine Learning Challenge database, and shown to outperform the conventional language recognition methods such as cosine distance, SVM and softmax NN classifier in open-set experiments.

Multicore Processor based Parallel SVM for Video Surveillance System (비디오 감시 시스템을 위한 멀티코어 프로세서 기반의 병렬 SVM)

  • Kim, Hee-Gon;Lee, Sung-Ju;Chung, Yong-Wha;Park, Dai-Hee;Lee, Han-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.161-169
    • /
    • 2011
  • Recent intelligent video surveillance system asks for development of more advanced technology for analysis and recognition of video data. Especially, machine learning algorithm such as Support Vector Machine (SVM) is used in order to recognize objects in video. Because SVM training demands massive amount of computation, parallel processing technique is necessary to reduce the execution time effectively. In this paper, we propose a parallel processing method of SVM training with a multi-core processor. The results of parallel SVM on a 4-core processor show that our proposed method can reduce the execution time of the sequential training by a factor of 2.5.

SVM-Guided Biplot of Observations and Variables

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.491-498
    • /
    • 2013
  • We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

Voice-Based Gender Identification Employing Support Vector Machines (음성신호 기반의 성별인식을 위한 Support Vector Machines의 적용)

  • Lee, Kye-Hwan;Kang, Sang-Ick;Kim, Deok-Hwan;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.75-79
    • /
    • 2007
  • We propose an effective voice-based gender identification method using a support vector machine(SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model(GMM) using the mel frequency cepstral coefficients(MFCC). A novel means of incorporating a features fusion scheme based on a combination of the MFCC and pitch is proposed with the aim of improving the performance of gender identification using the SVM. Experiment results indicate that the gender identification performance using the SVM is significantly better than that of the GMM. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.