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Abstract
We consider support vector machines(SVM) to predict Y with p numerical variables X1, . . . , Xp. This paper

aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM
classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted
to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model
a priori.
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1. Background and Aim

Suppose that we have a dataset that consists of a response variable Y and p explanatory numerical
variables X1, . . . , Xp. Support vector machine(SVM) produces flexible classification and regression
models in an efficient way, even in the case of a large p compared to the number of observations
n, using the so-called “kernel trick”. One possible criticism of the SVM relying on nonlinear kernels
could be the difficulty in the interpretation of the constructed model, because multivariate observations
are mapped onto a Hilbert space, that is quite different from Euclidean space. Recently, there emerged
the kernel PCA that projects observations or points of the “intractable” Hilbert space on a reduced
dimensional subspace (Schölkopf et al., 1998).

This paper aims to build a biplot of n observations and p explanatory variables, of which the
first dimension indicates the direction of SVM classification/regression fits. The second dimension
is added to posit n points as widely spread as possible, using the geometric scheme of kernel PCA.
Similar graph was developed by Huh and Lee (2013) for the cases of linear or logistic regression.

2. Geometry of Hilbert Space with Kernel Trick

Let x1, . . . , xn be p-dimensional numeric observations. We consider the transform Φ(x) of x from Rp

to a Hilbert space H and assume that the dot product between the two images Φ(x) and Φ(x′) of x
and x′ can be obtained through a kernel function K(x, x′). Then, for a given linear composite w of
Φ(x1), . . . ,Φ(xn) on H, i.e.,

w =
n∑

i=1

ciΦ(xi) (2.1)

This study was supported by Korea University Grant.
1 Professor, Department of Statistics, Korea University, Anam-Dong 5-1, Sungbuk-Gu, Seoul 136-701, Korea.

E-mail: stat420@korea.ac.kr



492 Myung-Hoe Huh

the projection score of Φ(x) on the unit-normed vector w1 of (2.1) is given by

1
s

n∑
i=1

ciK(x, xi), (2.2)

where s = (ctKc)1/2, w1 = 1/s
∑n

i=1 ciΦ(xi) and K = (kii′), kii′ = K(xi, xi′). More compactly, (2.2) can
be written as

1
s

k∗c,

where k∗ denotes the 1 × n kernel dot product matrix between x and Xt = (x1, . . . , xn). Now, we
consider the projections of Φ(xi) − 1/n

∑n
i=1Φ(xi), i = 1, . . . , n, on a linear composite of Φ(x1) −

1/n
∑n

i=1Φ(xi), . . . ,Φ(xn) − 1/n
∑n

i=1Φ(xi), i.e.,

v =
n∑

i=1

di

Φ(xi) −
1
n

n∑
i=1

Φ(xi)

 . (2.3)

Depending on the choice of d1, . . . , dn, the total of squared norms of the projection varies. Kernel
PCA answers for the maximal total of squared norms under the constraint < v, v >= 1 (Schölkopf et
al., 1998). The optimal (d1, . . . , dn)t(= d) equals λ−0.5

1 u1, where λ1 is the primary eigenvalue of

K̃ =
(
I − 1

n
J
)

K
(
I − 1

n
J
)

and u1 is the corresponding eigenvector.
For the image Φ(x) of arbitrary x, the projection score on v of (2.3) is

n∑
i=1

di

K(x, xi) −
1
n

n∑
i′=1

K(x, xi′) −
1
n

n∑
i′′=1

K(xi, xi′′ ) +
1
n2

n∑
i′′=1

n∑
i′′′=1

K(xi′′ , xi′′′)


=

(
k∗ − 1

n
k∗J − 1

n
1tK +

1
n2 1tKJ

)
d. (2.4)

We note that (2.4) depends only on two dot product matrices, k∗ and K, through d.
In this study, we use the most popular kernel, radial basis function(RBF), from among the available

types. RBF kernel is defined as

K
(
x, x′

)
= exp

(
−σ∥x − x′∥2

)
, σ > 0.

However, the essence of this study is not limited to RBF kernel. More materials on kernel principal
component analysis can be found at Karatzoglou et al. (2004), Hastie et al. (2009) and Huh (2013).

3. SVM Classification and Biplot

Suppose that each of n observations is classified into one of two groups, coded as yi = −1 or 1 for
i = 1, . . . , n. Denoting the explanatory part of the ith observation by p× 1 vector xi, SVM classifies an
arbitrary case with explanatory feature x to one of two groups (−1 or 1) by the sign of

fS V M(x) =< w,Φ(x) > + b0, (3.1)
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where Φ(x) denotes the transform of x in Rp to a Hilbert space H and

w =
n∑

i=1

λiyiΦ(xi), λi ≥ 0.

We assume that the dot product on H between Φ(x) and Φ(x′) for arbitrary x and x′ in Rp is
defined through a kernel function K(x, x′). Then, (3.1) can be expressed as

fS V M(x) =
n∑

i=1

ciK(xi, x) + b0, (3.2)

where ci = λiyi, i = 1, . . . , n.
The squared norm of w is equal to

∥w∥2 =
n∑

i=1

n∑
i′=1

ciK(xi, xi′)ci′ = ctKc,

where c = (ci) and K = (kii′), kii′ = K(xi, xi′). Hence, the unit vector

w1 =
1
s

n∑
i=1

ciΦ(xi), for s = (ctKc)
1
2

determines the direction of the model fits on H. Therefore, the projection scores of Φ(xi) on w1 are⟨
Φ(xi),

1
s

n∑
i′=1

ci′Φ(xi′ )
⟩
=

1
s

n∑
i′=1

ci′K(xi, xi′), i = 1, . . . , n,

or the n elements of

1
s

Kc. (3.3)

Orthogonal components Φ̃(xi) of Φ(xi) projected on w1 are given by

Φ̃(xi) = Φ(xi) − biw1, for bi =
1
s

n∑
i′=1

ci′K(xi, xi′ ).

Write b = (b1, . . . , bn)t for later use. Hence⟨
Φ̃(xi), Φ̃(xi′ )

⟩
=< Φ(xi) − biw1,Φ(xi′) − bi′w1 >

= kii′ − bi < Φ(xi′),w1 > − bi′ < Φ(xi),w1 > + bibi′ < w1,w1 >

= kii′ − bi bi′ , i, i′ = 1, . . . , n.

Thus, dot products among orthogonal components Φ̃(xi) of Φ(xi) projected on w1 are given by n2

elements of

K − bbt (= K′′) or K − 1
s2 KcctKt.
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Once obtained dot product matrix K′′, we can derive the primary direction of Φ̃(x1), . . . , Φ̃(xn)
in the Hilbert space H via kernel PCA algorithm. That is, the coefficient vector d′′ combining
Φ̃(x1), . . . , Φ̃(xn) for the direction of maximal spread is determined from the eigen-decomposion of
(I − (1/n)J)K′′(I − (1/n)J) (= K̃′′). Thus the principal projection scores are

K̃′′d′′, (3.4)

where d′′ = λ′′−0.5
1 u′′, where λ′′1 is the largest eigenvalue of K̃′′ and u′′1 is the corresponding eigenvec-

tor.

Perturbation Scheme for Arrow Diagram

Let X∗ = X + Eδ, n × p, where Eδ denotes a perturbation of zero matrix. Specifically, Eδ could be the
zero matrix with the jth column replaced by δ 1n for some j = 1, . . . , p. In that case, the ith row x∗i of
X∗ is equal to x∗i = xi + δ e j for e j = (0, . . . , 1, . . . , 0)t. Projection scores of Φ(x∗i ) on w1 are given by

b∗i =
1
s

n∑
i′=1

ci′K
(
x∗i , xi′

)
, i = 1, . . . , n.

Thus we compute b∗ = (b∗1, . . . , b
∗
n)t. More compactly, the scores are obtained through

1
s

K∗c, (3.5)

where K∗ = (k∗ii′) and k∗ii′ = K(x∗i , xi′).
Write Φ̃(x∗i ) = Φ(x∗i ) − b∗i w1, i = 1, . . . , n. Then, the dot products between Φ̃(x∗i ) and Φ̃(xi′ ) are⟨

Φ̃(x∗i ), Φ̃(xi′ )
⟩
=< Φ(x∗i ) − b∗i w1,Φ(xi′) − bi′w1 >= K

(
x∗i , xi′

) − b∗i bi′ ,

or, the (i, i′)th element of

K∗ − b∗bt
(
= K∗

′′)
.

Therefore, the primary dispersion scores for perturbed observations are given by(
K∗

′′ − 1
n

K∗
′′
J − 1

n
JK′′ +

1
n2 JK′′J

)
d′′. (3.6)

We propose “SVM-guided biplot” as the plot of (3.3) versus (3.4) on the vertical and the horizontal
axes, respectively, for n observations, overlaid with the arrows oriented to the points of which the
vertical and horizontal coordinates equal to (3.5) and (3.6) for each variable.

Example 1: Iris Data

As an example, we consider a subset of the iris data, restricted to the species Versicolor (−1) and
Virginica (+1). The number of observations is 100(= n) and the explanatory variates are sepal length,
sepal width, petal length and petal width (p = 4). We use RBF kernel with σ = 0.1 and set C = 1.

SVM-guided biplot (δ = 0.5) of the iris data is shown in Figure 1. The vertical axis represents
the discrimination between the two species, Versicolor (in blue) and Virginica (in red). Thus, sepal
length and sepal width are mostly irrelevant factors in distinguishing species, while petal length and
petal width are key variables for species identification. It is likely that iris flowers with relatively large
petal measurements are Virginica.
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Figure 1: SVM-guided biplot of the iris data (δ = 0.5)

Example 2: Spam Data

Spam data of the UCI Machine Learning Repository consists of 4,601 (= n) e-mails with 57 (= p)
morphological characters or frequencies of certain words. Each mail is tagged as either “non-spam”
(−1) or “spam” (+1). We use RBF kernel with σ = 0.1 and set C = 10, which is selected as the best
tuning values by ten-fold cross-validation searched over a reasonable range of the parameters.

There are too many predictors to draw all arrow diagrams (one for each variable); therefore, we
select two key variables with long arrows in either the vertical axis or horizontal axis. Formal index
for importance may be defined by the total of squared arrow lengths in the direction of either axis.

Figure 2 shows two arrow diagrams (δ = 1) for “free” and “charDollar” (carrying maximal in-
formation on vertical axis) and two arrow diagrams (δ = 1) for “you” and “will” (carrying maximal
information on horizontal axis). In the diagrams, spam mails are colored in red and non-spam mails
are colored in blue.
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Figure 2: SVM-guided biplot of the spam data (δ = 1)

4. SVM Regression and Biplot

Suppose that a target variable Y of numerical type is measured at each of n observations together
with p explanatory variables X1, . . . , Xp. Denoting the explanatory part of the ith observation by p× 1
vector xi, SVM epsilon regression predicts the response of an arbitrary case with explanatory feature
x to be

fS V M(x) =< w,Φ(x) > +b0

where Φ(x) denotes the transform of x in Rp to a Hilbert space H. As an optimization problem, it can
be stated as

min

1
2
∥w∥2 +C

n∑
i=1

ξi
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Figure 3: SVM-guided biplot of the aerobic fitness data (δ = 1)

subject to

yi − f (xi) − ξi ≤ ϵ, if yi − f (xi) > ϵ,
yi − f (xi) − ξi ≥ −ϵ, if yi − f (xi) < −ϵ,
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where ξi (i = 1, . . . , n) are non-negative quantities called slack variables. The solution for w is given
by

w =
n∑

i=1

(
αi − α∗i

)
Φ(xi), αi ≥ 0, α∗i ≥ 0.

Hence, once the weight vector w is determined, the regression case is not different from the classifi-
cation case.

Example 3: Aerobic Fitness Data

In the aerobic fitness data (SAS Inc., 2009) obtained from thirty-one males, the response variable is
the oxygen uptake rate (= Y) and the explanatory variables are the age (= X1), running time (= X2),
run pulse (= X3), weight (= X4), max pulse (= X5), and rest pulse (= X6).

We use RBF kernel with σ = 0.1. Setting C = 10 and ϵ = 0.1, we obtained Figure 3 (δ = 1).
The graphs show that the running time(rtm) is most influential for the determination of Y , the vertical
axis, and that three pulses (rst, run, max) are linked to the determination of the principal spread, the
horizontal axis.

5. Concluding Remark

Huh and Lee (2013) extended Gabriel (1971)’s “biplot” of observations and variables for the cases
of linear and logistic regression. This study further extended the methodology to the cases in which
SVM and Kernel PCA are brought in.

For the datasets with large number p of variables, it would be a messy job if one tries to examine
all the diagrams for variables. In such situations, we recommend to draw arrow diagrams only for
selected variables that have relatively large influence on determination of the axes.
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