• 제목/요약/키워드: support vector machine(SVM)

검색결과 1,266건 처리시간 0.027초

Variable selection for multiclassi cation by LS-SVM

  • Hwang, Hyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.959-965
    • /
    • 2010
  • For multiclassification, it is often the case that some variables are not important while some variables are more important than others. We propose a novel algorithm for selecting such relevant variables for multiclassification. This algorithm is base on multiclass least squares support vector machine (LS-SVM), which uses results of multiclass LS-SVM using one-vs-all method. Experimental results are then presented which indicate the performance of the proposed method.

Kernel-Trick Regression and Classification

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제22권2호
    • /
    • pp.201-207
    • /
    • 2015
  • Support vector machine (SVM) is a well known kernel-trick supervised learning tool. This study proposes a working scheme for kernel-trick regression and classification (KtRC) as a SVM alternative. KtRC fits the model on a number of random subsamples and selects the best model. Empirical examples and a simulation study indicate that KtRC's performance is comparable to SVM.

Face Recognition using Correlation Filters and Support Vector Machine in Machine Learning Approach

  • Long, Hoang;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.528-537
    • /
    • 2021
  • Face recognition has gained significant notice because of its application in many businesses: security, healthcare, and marketing. In this paper, we will present the recognition method using the combination of correlation filters (CF) and Support Vector Machine (SVM). Firstly, we evaluate the performance and compared four different correlation filters: minimum average correlation energy (MACE), maximum average correlation height (MACH), unconstrained minimum average correlation energy (UMACE), and optimal-tradeoff (OT). Secondly, we propose the machine learning approach by using the OT correlation filter for features extraction and SVM for classification. The numerical results on National Cheng Kung University (NCKU) and Pointing'04 face database show that the proposed method OT-SVM gets higher accuracy in face recognition compared to other machine learning methods. Our approach doesn't require graphics card to train the image. As a result, it could run well on a low hardware system like an embedded system.

Using Support Vector Machine to Predict Political Affiliations on Twitter: Machine Learning approach

  • Muhammad Javed;Kiran Hanif;Arslan Ali Raza;Syeda Maryum Batool;Syed Muhammad Ali Haider
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.217-223
    • /
    • 2024
  • The current study aimed to evaluate the effectiveness of using Support Vector Machine (SVM) for political affiliation classification. The system was designed to analyze the political tweets collected from Twitter and classify them as positive, negative, and neutral. The performance analysis of the SVM classifier was based on the calculation of metrics such as accuracy, precision, recall, and f1-score. The results showed that the classifier had high accuracy and f1-score, indicating its effectiveness in classifying the political tweets. The implementation of SVM in this study is based on the principle of Structural Risk Minimization (SRM), which endeavors to identify the maximum margin hyperplane between two classes of data. The results indicate that SVM can be a reliable classification approach for the analysis of political affiliations, possessing the capability to accurately categorize both linear and non-linear information using linear, polynomial or radial basis kernels. This paper provides a comprehensive overview of using SVM for political affiliation analysis and highlights the importance of using accurate classification methods in the field of political analysis.

기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 - (KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul -)

  • 윤형진;정종철
    • 대한원격탐사학회지
    • /
    • 제36권6_2호
    • /
    • pp.1567-1577
    • /
    • 2020
  • 시가화 지역 토지피복분류는 도시계획 및 관리에 활용된다. 따라서, 시가화 지역에 대한 분류 정확도 향상 연구는 중요하다고 할 수 있다. 본 연구에서는 고해상도 위성영상인 KOMPSAT-3A을 기계학습 중 Support Vector Machine(SVM)과 Artificial Neural Network(ANN)을 기반으로 시가화지역 분류를 진행하였다. 훈련 데이터 구축과정에서 25 m 격자를 기반으로 훈련 지역을 구분하여 영상을 학습하였으며, 학습된 모델을 활용하여 테스트 지역을 분류하였다. 검증과정에서 250개의 GTP를 활용하여 오차 행렬을 통한 결과를 제시하였다. SVM 4가지 기법과 ANN 2가지 기법 중 SVM Polynomial Model이 가장 높은 정확도인 86%를 나타냈다. Ground Truth Points(GTP)를 활용하여 두 개의 모델을 비교하는 과정에서, SVM 모델은 전체적으로 ANN 모델보다 효과적으로 KOMPSAT-3A 영상을 분류하였다. 건물, 도로, 식생, 나대지 4가지 클래스 분류 중 건물이 가장 낮은 분류정확도를 보여주었으며, 이는 고층건물에 따른 건물 그림자에 의한 오분류가 주요 원인으로 나타났다.

Support Vector Machine-Regression을 이용한 주기신호의 이상탐지 (A Fault Detection of Cyclic Signals Using Support Vector Machine-Regression)

  • 박승환;김준석;박정술;김성식;백준걸
    • 품질경영학회지
    • /
    • 제38권3호
    • /
    • pp.354-362
    • /
    • 2010
  • This paper presents a non-linear control chart based on support vector machine regression (SVM-R) to improve the accuracy of fault detection of cyclic signals. The proposed algorithm consists of the following two steps. First, the center line of the control chart is constructed by using SVM-R. Second, we calculate control limits by variances that are estimated by perpendicular and normal line of the center line. For performance evaluation, we apply proposed algorithm to the industrial data of the chemical vapor deposition process which is one of the semiconductor processes. The proposed method has better fault detection performance than other existing method

분산 게이트웨이 환경에서의 Support Vector Machine을 이용한 센서 데이터 할당 (Sensor Data Allocation using Support Vector Machine in Distributed-Gateway System)

  • 이태호;유승언;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.199-200
    • /
    • 2018
  • 본 논문에서는 IIoT(Industrial IoT) 환경의 분산 게이트웨이 시스템(Distributed-Gateway System)에서 사용되는 수 천 개 이상의 센서에서 데이터 전송을 받는 각 게이트웨이의 데이터 처리 속도를 향상시키고 작업 오류를 줄이기 위하여 SVM(Support Vector Machine) 알고리즘을 사용한 센서 데이터 할당 기법을 제안한다. 각 센서의 반복 측정 간격과 중요도에 따라 작업부하(Workload)를 구하고, 이를 순차 반복 비교를 통해 Sub-task 값을 구한다. 이렇게 구해진 Sub-task값을 기준으로 각 게이트웨이에 할당시킴으로써 신뢰성과 정확성, 신속성을 확보한다.

  • PDF

Classifying Malicious Web Pages by Using an Adaptive Support Vector Machine

  • Hwang, Young Sup;Kwon, Jin Baek;Moon, Jae Chan;Cho, Seong Je
    • Journal of Information Processing Systems
    • /
    • 제9권3호
    • /
    • pp.395-404
    • /
    • 2013
  • In order to classify a web page as being benign or malicious, we designed 14 basic and 16 extended features. The basic features that we implemented were selected to represent the essential characteristics of a web page. The system heuristically combines two basic features into one extended feature in order to effectively distinguish benign and malicious pages. The support vector machine can be trained to successfully classify pages by using these features. Because more and more malicious web pages are appearing, and they change so rapidly, classifiers that are trained by old data may misclassify some new pages. To overcome this problem, we selected an adaptive support vector machine (aSVM) as a classifier. The aSVM can learn training data and can quickly learn additional training data based on the support vectors it obtained during its previous learning session. Experimental results verified that the aSVM can classify malicious web pages adaptively.

개선된 QIM과 SVM을 이용한 공격에 강인한 다중 오디오 워터마킹 알고리즘 개발 (Development of a Robust Multiple Audio Watermarking Using Improved Quantization Index Modulation and Support Vector Machine)

  • 서예진;조상진;정의필
    • 융합신호처리학회논문지
    • /
    • 제16권2호
    • /
    • pp.63-68
    • /
    • 2015
  • 본 논문에서는 신호의 파워에 따라 적응적 스텝 사이즈를 갖는 개선된 QIM(Quantization index modulation)과 SVM(Support vector machine) 디코딩 모델을 이용한 다중 오디오 워터마킹 알고리즘을 제안한다. 워터마크는 주파수 크기 응답과 주파수 위상 응답에 QIM을 이용하여 삽입한다. 이는 주파수 크기 응답과 위상 응답에 강인한 공격이 다르기 때문에 양쪽 모두 삽입하여 강인성을 보완하기 위해서이다. 검출시에는 SVM 디코딩 모델을 사용하여 검출된 워터마크가 워터마크로서의 기능이 애매모호한 경우를 개선하여 검출 비율을 향상시킨다. 강인성 검증을 위해 11개의 공격을 사용하였고 그 결과 SVM 디코딩 모델을 사용하지 않은 기존의 다중 오디오 워터마킹 방법보다 훨씬 우수한 성능을 보였다. 특히 PSNR은 최대 7dB의 개선 효과를, BER은 10%의 개선 효과를 보인 것은 주목할 만한 결과이다.

다중 클래스 SVM을 이용한 트래픽의 이상패턴 검출 (Traffic Anomaly Identification Using Multi-Class Support Vector Machine)

  • 박영재;김계영;장석우
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1942-1950
    • /
    • 2013
  • 본 논문에서는 네트워크 트래픽 데이터를 시각화하고, 시각화된 데이터에 다중 클래스 SVM을 적용함으로써 트래픽의 공격을 자동으로 탐지하는 새로운 방법을 제안한다. 본 논문에서 제안된 방법은 먼저 송신자와 수신자의 IP와 포트 정보를 2차원의 영상으로 시각화한 후, 시각화된 영상으로부터 트래픽의 공격을 의미하는 라인과 명암값이 높은 패턴을 추출한다. 그리고 송신자와 수신자 포트의 분산도 값을 구하고, ISODATA 군집화 알고리즘을 이용하여 군집의 개수와 엔트로피 특징 값을 추출한다. 그런 다음, 위에서 추출한 여러 특징 값들을 다중클래스 SVM(Support Vector Machine)에 적용하여 네트워크 트래픽의 공격이 정상 트래픽, DDoS, DoS, 인터넷 웜, 그리고 포트 스캔인지의 여부를 효과적으로 탐지 및 분류한다. 본 논문의 실험에서는 제안된 다중 클래스 SVM을 활용한 방법이 네트워크 트래픽의 공격을 보다 효과적으로 탐지하고 분류한다는 것을 보여준다.