• Title/Summary/Keyword: support project to dam

Search Result 13, Processing Time 0.101 seconds

The Influence Analysis of Support Working Expenses for Yongdam Dam Area Considering the Resolution of Digital Topographic Map (수치지형도 해상도를 고려한 용담댐 주변지역 지원사업비 영향 분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.523-531
    • /
    • 2010
  • A dam is effective in stable supply of water required in daily life and reduced damage from floods, but there are problems as a lot of land or houses are submerged. Therefore many projects have been conducted in order to improve and support daily life environment surrounding a dam. This study has focused on analyzing how to calculate support working expenses for Dam area by using GIS spatial overlay in addition to effects of scale of a topographic map and reached the following conclusion. First, as a result of areal error in submerged area by scale based on a 1/3,000 digital topographic map, it has been found that a 1/5,000 digital topographic map is 9.5 times more accurate than a 1/25,000 digital topographic map in the total of areal error. Second, as a result of areal error in area surrounding a dam, it has been found that a 1/5,000 digital topographic map is 7.4 times more accurate than a 1/25,000 digital topographic map in the total of areal error. Third, as a result of error of support expense for submerged area, it has been found that a 1/5,000 digital topographic is 15.9 times, 14.7 times and 15.9 times more effective than a 1/25,000 digital topographic map in terms of the total error of support expense, standard error and the total support expense error on the entire project costs in submerged area. In addition, as a result of analysis on error of support expense for area surrounding a dam, it has been found that a 1/5,000 digital topographic map was 10.7 times, 9.6 times and 10.6 times more effective, respectively, in the total error of support expense, standard error and the total error of support expense for the entire project costs in area surrounding a dam compared to a 1/25,000 digital topographic map. Lastly, as a result of error of the entire project costs for area surrounding a dam, it has been found that a 1/5,000 digital topographic map was 1.4 times, 1.3 times and 1.4 times more effective, respectively, in the total error of support expense, standard error and the total error of the entire project costs compared to a 1/25,000 digital topographic map, but it was not much different from the result of calculating areal error in submerged area or area surrounding a dam because population item didn't consider areal concept.

The Study on the Satisfaction Factors of the Support Projects for the Adjacent Residents to Multipurpose Dams (다목적 댐주변지역지원사업 고객만족에 미치는 영향 요인 연구)

  • Kim, Shang Moon;Lee, Byungchul
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.335-343
    • /
    • 2013
  • Multi-purpose dams are regarded to contribute to the Korean society not only positive affects but also negative ones. Especially, negative considerations are usually prevailed around multi-purpose dam sites and their vicinities even though the Government adopted "act on dam construction and assistance, etc. to neighborhood area" in 1989 and has supported many various projects since 1990. Nevertheless, many arguments and controversies about effects of multi-purpose dams and support projects to vicinities" have happened so frequently and sometimes brought a suit against government. These situations imply that support projects are not so sufficient to fulfil peoples' expectations. Therefore, this research figured out the key factors that affected residents' satisfaction about multi-purpose dams and support projects. The results of the research are as follows: 1) 'social necessity of dams', 'rationality of the process in supporting project' and 'appropriateness of supporting project', were statistically significant to 'customer satisfaction'; 2) among these factors, 'rationality of the process in supporting project' was the most related to 'customer satisfaction': 3) 'appropriateness of supporting project', 'social necessity of dams' were also revealed as second third factors that relate to the satisfaction.

Reformation Methods of Environmental Impact Assessment in Water Resources Development Project by Examining Local Resident Opinions (수자원 개발사업 주민의견 유형분석을 통한 환경영향평가 개선방안)

  • Yang, Kee-Hyoun;Park, Jae-Chung;Ryu, Young-Han;Jeong, Yong-Moon;Song, Sang-Jin;Shin, Jae-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.397-409
    • /
    • 2011
  • This study was carried out for improving the effectiveness of water resources development project through local resident opinions in the environmental impact assessment(EIA). The EIA reports of seven dams were examined. Four dams -Youngju Dam, Seongduck Dam, Buhang Dam and Hantangang Dam- which included many local opinions including 470 opinions of 341 local residents were selected to be analyzed. Local residents submitted their opinions in the six fields which are meteorological phenomena, water quality, land use, fauna and flora, noise and vibration, and residence, and the major opinions of those opinions came from the atmosphere environment field which is 32% of total opinions and social and economic field which is 38% of total opinions, respectively. In submerged area, opinions of the measure for migration and compensation were 91% and in non-submerged area, opinions of the measure for meteorological phenomena was 86%. Those percentages were maximum in each area. Opinions concerned meteorological phenomena were 86% and 53% in Youngju Dam and Seongduck Dam where area is surrounded by existing dam, but there was only 9% and 0% of opinions in Buhang Dam and Hantangang Dam where area is without existing dam nearby. The reformation methods which reflected the resident's opinions were suggested on EIA in dam development projects. First of all, reliability and objectivity of the field of meteorological phenoma should be enhanced by scientific prediction of the phenomenon days. Secondly, techniques reducing uncertainty of various water quality prediction models ought to be developed and effectiveness of the reduction strategies in environmental impact should be quantified. Finally, the draft of EIA report should involve the detailed plans of migration and compensation's procedures, criteria and measures to support.

Investment Ranking Decision Using MCDA in Dam Projects (MCDA 기법을 이용한 댐사업의 투자우선순위 결정)

  • Kim, Woo-Gu;Lee, Gwang-Man;Park, Doo-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1067-1080
    • /
    • 2006
  • In empirical evaluations of public projects and public provided goods, MCDA(multicriteria decision-making analysis) has helped decision makers with an adequate policy decision-making tool since it allows taking into account a wide range of assessment criteria. As a tool for decision-making of conflict management, MCDA has demonstrated its usefulness in many public projects such as road, dam and harbor construction. In this study, to use this merit of MCDA, dam project assessment indicators from points of social, economic, environmental and practical views are developed based on sustainable development of water resources, and weighting factors are also estimated by means of questionnaire survey. In order to decide project investment rank, developed evaluation indicators are applied to 6 existing dams under investigation for a rehabilitation project. In addition to, it is recognized that the project practicability has become more important indicator as well as environmental and social issues. This is because cooperation and support from a local government and people are regarded as one of the most important problems in public projects recently.

Rock Support Design of Bakun Tunnelling Project in Sarawak, Malaysia (바쿤 가배수로 터널의 최적지보설계)

  • 지왕률
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.296-306
    • /
    • 1998
  • Ongoing huge Bakun Hydropower project is including the construction of a 210 m height hydroelectric rockfill dam with an installed capacity of 2,520 MW and a power transmission system connecting to the existing networks between Sarawak and peninsula Malaysia. In order to allow the main dam construction during the dry season, the Ballui river will have to be detoured through 3 concrete lined diversion tunnels with an internal diameter of 12 m and a length of 1,400 m each. The geology of Bakun site belongs to the several thousand meters thick Belaga formation deposited from the late Cteteceous to the early Teriary in the Northwest Borneo geosyncline. The orientation of the bedding plane, strike at N55$^{\circ}$E to N70$^{\circ}$E and dip at 50$^{\circ}$SE to 70$^{\circ}$SE, is developed uniformly in Bakun sedimentary rocks. Rock mechanical characteristics of Bakun site have been classified into 4 rock mass types(RMT) depending on the degree of weathering and the occurrence of rock jointing with RMR. Graywacke(Sandstone) as well as Shale can take place together in the same rock mass type if their rock mass properties are similar. It was summarized the rock support type and support system design of underground diversion tunnels in view of rock mechanics.

  • PDF

Construction Claims Prediction and Decision Awareness Framework using Artificial Neural Networks and Backward Optimization

  • Hosny, Ossama A.;Elbarkouky, Mohamed M.G.;Elhakeem, Ahmed
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents optimized artificial neural networks (ANNs) claims prediction and decision awareness framework that guides owner organizations in their pre-bid construction project decisions to minimize claims. The framework is composed of two genetic optimization ANNs models: a Claims Impact Prediction Model (CIPM), and a Decision Awareness Model (DAM). The CIPM is composed of three separate ANNs that predict the cost and time impacts of the possible claims that may arise in a project. The models also predict the expected types of relationship between the owner and the contractor based on their behavioral and technical decisions during the bidding phase of the project. The framework is implemented using actual data from international projects in the Middle East and Egypt (projects owned by either public or private local organizations who hired international prime contractors to deliver the projects). Literature review, interviews with pertinent experts in the Middle East, and lessons learned from several international construction projects in Egypt determined the input decision variables of the CIPM. The ANNs training, which has been implemented in a spreadsheet environment, was optimized using genetic algorithm (GA). Different weights were assigned as variables to the different layers of each ANN and the total square error was used as the objective function to be minimized. Data was collected from thirty-two international construction projects in order to train and test the ANNs of the CIPM, which predicted cost overruns, schedule delays, and relationships between contracting parties. A genetic optimization backward analysis technique was then applied to develop the Decision Awareness Model (DAM). The DAM combined the three artificial neural networks of the CIPM to assist project owners in setting optimum values for their behavioral and technical decision variables. It implements an intelligent user-friendly input interface which helps project owners in visualizing the impact of their decisions on the project's total cost, original duration, and expected owner-contractor relationship. The framework presents a unique and transparent hybrid genetic algorithm-ANNs training and testing method. It has been implemented in a spreadsheet environment using MS Excel$^{(R)}$ and EVOLVERTM V.5.5. It provides projects' owners of a decision-support tool that raises their awareness regarding their pre-bid decisions for a construction project.

Guidelines by World Commission on Dams as seen from Japanese Dam Projects in the Past

  • Nakayama, Mikiyasu;Fujikura, Ryo;Mori, Katsuhiko
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05a
    • /
    • pp.219-225
    • /
    • 2003
  • The World Commission on Dams (WCD) in November 2000 published "Dams and Development" as its only and final report. The report proposed "internationally acceptable criteria and standards" Despite the (act that the WCD itself did not regard the report as a blue print, many NGO's strongly support the report and the guidelines, and demand that they be adopted in their current form by funding organizations. The WCD recommendations and guidelines were found to have several "generic" problems, and the proposed guidelines appear unable to be applied as they stand. The authors assume that only several of these guidelines are operational and many of these are either too experimental or theoretical to be put into use. Furthermore, some seemingly "ready for operation" guidelines still need to be enhanced to be really operational in the real world. About 2,000 large dams were constructed in Japan after the Second World War. Various principles and mechanisms were then developed to better address the issues related to involuntary resettlement. The knowledge accumulated through large dam construction projects in Japan may be applied to other countries. The aim of this paper is to identify the lessons, out of the experiences gained in Japan through large dam construction projects in the past, which could be applicable for future large dam construction projects in other nations. The socio-economic settings as well as legal frameworks in Japan may differ other nation. Nevertheless, the following aspects of the experiences gained in Japan are found to be both applicable and useful for future large dam construction projects abroad: (a) Integrity of community in the negotiation process, (b) Provision of alternative occupations, (c) Funding mechanism in the post-project period, (d) Measures needed during planning process, and (e) Making resettlers "shareholders". These lessons may prove useful to enhance the WCD guidelines.

  • PDF

Sensitivity Analysis for Parameter of Rainfall-Runoff Model During High and Low Water Level Season on Ban River Basin (한강수계의 고수 및 저수기 유출모형 매개변수 민감도 분석)

  • Choo, Tai-Ho;Maeng, Seung-Jin;Ok, Chi-Youl;Song, Ki-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1334-1343
    • /
    • 2008
  • Growing needs for efficient management of water resources urge the joint operation of dams and integrated management of whole basin. As one of the tools for supporting above tasks, this study aims to constitute a hydrologic model that can simulate the streamflow discharges at some control points located both upper and down stream of dams. One of the currently available models is being studied to be applied with a least effort in order to support the ongoing project of KWATER (Korea Water Resources Corporation), "Establishment of integrated operation scheme for the dams in Han River Basin". On this study, following works have been carried out : division of Han River Basin into 24 sub-basins, use of rainfall data of 151 stations to make spatial distribution of rainfall, selection of control points such as Soyanggang Dam, Chungju Dam, Chungju Release Control Dam, Heongseong Dam, Hwachun Dam, Chuncheon Dam, Uiam Dam, Cheongpyung Dam and Paldang Dam, selection of SSARR (Streamflow Synthesis and Reservoir Regulation) model as a hydrologic model, preparation of input data of SSARR model, sensitivity analysis of parameter using hydrologic data of 2002. The sensitivity analysis showed that soil moisture index versus runoff percent (SMI-ROP), baseflow infiltration index versus baseflow percent (BII-BFP) and surface-subsurface separation (S-SS) parameters are higher sensitive parameters to the simulation result.

Soft Sedimentary Rock Slopes Design of Diversion Tunnel

  • Jee, Warren Wangryul
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.63-79
    • /
    • 2007
  • Several remedial works were attempted to stabilize the collapsed area of the inlet slopes of diversion tunnel, but prevention of any further movement was being only carried out at beginning stage by filling the area with aggregates and rock debris, after several cracks had been initiated and developed around the area. The extra specialty developed folding zone is consisted with highly weathered Greywacke and Black shale. The suggested solution is to improve the properties of the rock mass of failed area by choosing the optimum level of reinforcement through the increment of slope rock support design so as to control the movement of slopes during the re-excavation. The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia. The power station will consist of a 210m height Concrete Faced Rockfill Dam. During the construction of the dam and the power facilities the Balui River has to be diverted of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four defined Rock Mass Type (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each "global" slope without any rock support and shotcrete system. In the second stage, it is calculated for each "local" slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

Design of the reinforced concrete lining in bakun diversion tunnels (말레이지아 바쿤 가배수로 터널의 철근콘크리트 라이닝 설계)

  • 지왕률;임태정
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.20-26
    • /
    • 1999
  • The completion of the Bakun Diversion Tunnel is subsequently to the Main Dam construction. Therefore, the completion date is very important for the Bakun Hydroelectric Project. Generally, the tunnel lining work as a finishing phase of the tunnelling project occupies a important portion as well as an excavation and a support work of the tunnels in respect to the construction cost and period. Internal section of Bakun Diversion Tunnel is designed circular shape to reduce the roughness of the water flow with 12 meters in diameter of total length 4314.6 meters of 3 tunnels. The lining thickness is varied between 500 mm and 700 mm depending on the structural condition. From the original Tender design of the Bakun tunnels, the required quantity of steel bars was 5,985 ton designed by Reinforced Concrete (RC) through the entire tunnel linings. During the detail design stage by the consideration of the rock conditions and various load conditions, we could suggest five kinds of RC lining type including plain concrete lining type. Through the detail design modification, we could reduce the required amount of steel bars to 2,178 ton, as a half of original Bill of Quantity. Finally, this design modification give us the time and cost saving effect to catch up the construction progress in time.

  • PDF