• Title/Summary/Keyword: supplementary cementitious materials (SCMs)

검색결과 24건 처리시간 0.024초

Prediction of chloride binding isotherms for blended cements

  • Ye, Hailong;Jin, Xianyu;Chen, Wei;Fu, Chuanqing;Jin, Nanguo
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.655-672
    • /
    • 2016
  • A predictive model for chloride binding isotherms of blended cements with various supplementary cementitious materials (SCMs) was established in this work. Totally 560 data points regarding the chloride binding isotherms of 106 various cements were collected from literature. The total amount of bound chloride for each mixture was expressed a combinational function of the predicted phase assemblage and binding isotherms of various hydrated phases. New quantitative expressions regarding the chloride binding isotherms of calcium-silicate-hydrate (C-S-H), AFm, and hydrotalcite phases were provided. New insights about the roles of SCMs on binding capabilities of ordinary portland cements (OPC) were discussed. The proposed model was verified using separate data from different sources and was shown to be reasonably accurate.

혼화재 치환율을 고려한 성숙도 기반의 콘크리트 압축강도 평가 모델 (Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials)

  • 문재성;양근혁;전용수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권6호
    • /
    • pp.82-89
    • /
    • 2014
  • 이 연구의 목적은 다양한 혼화재의 치환과 양생온도를 고려한 콘크리트의 압축강도 발현을 평가할 수 있는 단순모델의 제시이다. 이를 위해 ACI 209의 포물선 식을 성숙도 함수를 기반으로 하여 수정하였으며, 압축강도 발현 상수 A, B 그리고 재령 28일 압축강도는 264개의 기존 실험결과들의 회귀분석으로부터 결정하였다. 제시된 모델의 검증을 위하여 혼화재 치환과 양생온도를 변수로 3그룹의 실험을 수행하였다. 콘크리트의 28일 압축강도는 양생온도가 표준양생온도(20도시)보다 높을수록 또는 낮을수록 감소하였다. 초기 재령3일동안 표준온도에서 양생을 한 콘크리트의 압축강도 발현은 그 이후 양생온도 변화에 영향을 거의 받지 않았다. 제안된 모델의 예측값과 실험값의 비의 평균과 표준편차는 각각 1.00와 0.08로서 실험결과와 잘 일치하였다.

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

혼화재 종류 및 치환율을 고려한 저탄소 콘크리트 배합설계 모델 (Mixture-Proportioning Model for Low-CO2 Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials)

  • 정연백;양근혁
    • 콘크리트학회논문집
    • /
    • 제27권4호
    • /
    • pp.427-434
    • /
    • 2015
  • 이 연구의 목적은 다양한 혼화재를 기반으로 목표 $CO_2$ 저감율 뿐만 아니라 콘크리트 초기 슬럼프, 공기량 및 28일 압축강도와 같은 종래의 요구 사항을 만족하는 $CO_2$ 저감 콘크리트의 합리적인 배합 설계 절차를 확립하는 것이다. $CO_2$ 배출과 콘크리트의 압축강도에 혼화재가 미치는 영향을 평가하기 위해, 실내 배합 및 레미콘 공장 데이터(전체 12537 배합표)를 분석하였다. 콘크리트의 배합에 따른 $CO_2$ 배출량 평가를 위해 고려된 시스템 경계는 재료 채취 및 가공에서부터 레미콘 공장에서 콘크리트 생산단계까지이다. 구축된 12537 콘크리트 배합 데이터를 사용한 비선형 회귀 분석을 통해 혼화재의 종류 및 치환율, W/B, S/a와 같은 콘크리트 배합 설계를 결정할 수 있는 간단한 모델식을 제시하였다. 또한, 주어진 콘크리트 배합에 대한 $CO_2$ 배출량은 제안된 모델식을 이용하여 직접 계산 될 수 있다. 결국, 개발된 배합 설계 절차는 레미콘 분야에서 $CO_2$ 저감 콘크리트의 초기배합표를 결정하는데 효율적으로 이용될 수 있다.

Self-Consolidating Concrete Incorporating High Volume of Fly Ash, Slag, and Recycled Asphalt Pavement

  • Mahmoud, Enad;Ibrahim, Ahmed;El-Chabib, Hassan;Patibandla, Varun Chowdary
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권2호
    • /
    • pp.155-163
    • /
    • 2013
  • The use of sustainable technologies such as supplementary cementitious materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is imperative to qualify and implement such mixtures in practice, if the required specifications of their intended application are met. This paper presents the results of a laboratory investigation of self-consolidating concrete (SCC) containing sustainable technologies. Twelve mixes were prepared with different combinations of fly ash, slag, and recycled asphalt pavement (RAP). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. The addition of RAP to mixes showed a consistent effect, with a drop in strength after 3, 14, and 28 days as the RAP content increased from 0 to 50 %. However, most of the mixes satisfied SCC fresh properties requirements, including mixes with up to 50 % RAP. Moreover, several mixes satisfied compressive strength requirement for pavements and bridges, those mixes included relatively high percentages of SCMs and RAP.

Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts

  • Ghazy, Ahmed;Bassuoni, Mohamed. T.
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.649-659
    • /
    • 2018
  • Adaptive neuro-fuzzy inference systems (ANFIS) can be efficient in modelling non-linear, complex and ambiguous behavior of cement-based materials undergoing combined damage factors of different forms (physical and chemical). The current work investigates the use of ANFIS to model the behavior (time of failure (TF)) of a wide range of concrete mixtures made with different types of cement (ordinary and portland limestone cement (PLC)) without or with supplementary cementitious materials (SCMs: fly ash and nanosilica) under various exposure regimes with the most widely used chloride-based de-icing salts (individual and combined). The results show that predictions of the ANFIS model were rational and accurate, with marginal errors not exceeding 3%. In addition, sensitivity analyses of physical penetrability (magnitude of intruding chloride) of concrete, amount of aluminate and interground limestone in cement and content of portlandite in the binder showed that the predictive trends of the model had good agreement with experimental results. Thus, this model may be reliably used to project the deterioration of customized concrete mixtures exposed to such aggressive conditions.

콘크리트 CO2 저감을 고려한 혼화재 및 단위 결합재 양의 설계 (Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing CO2 Emission of Concrete)

  • 양근혁;문재흠
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.597-604
    • /
    • 2012
  • 이 연구에서는 2464개의 시멘트 콘크리트 배합과 776개의 혼화재가 치환된 혼합 시멘트 콘크리트 배합을 포함하는 실험 데이터베이스를 이용하여 콘크리트 압축강도 및 혼화재 치환율에 따른 콘크리트 $CO_2$ 배출량을 평가하였다. 국내 생애주기 데이터 목록에 기반한 콘크리트 $CO_2$ 평가에서 고려된 시스템은 요람에서 현장 콘크리트 타설 전까지로서 구성재료, 운반 및 생산단계를 포함하고 있다. 콘크리트의 성능 효율성 지표로서 결합재 지수와 $CO_2$ 지수가 분석되었으며, 콘크리트 $CO_2$ 배출량을 평가하기 위한 단순 식이 각 혼화재의 치환비 및 콘크리트 압축강도의 함수로서 제시되었다. 따라서 이 제안된 모델은 목표 압축강도 및 목표 시멘트 콘크리트 대비 $CO_2$ 배출 저감율을 만족하는 콘크리트 배합설계를 위하여 단위 결합재 양 및 혼화재 종류와 치환비를 결정하는 데 가이드 라인으로서 유용하게 이용될 수 있을 것으로 기대된다.

혼화재 다량치환 상태에서 FA 및 BS의 혼합비율에 따른 모르타르의 품질특성 (Performance Characteristics of Mortar with High Volume SCM Depending on Combinations of FA and BS)

  • 김민상;송원루;박성배;한동엽;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.126-127
    • /
    • 2016
  • In this research, the optimum combination of fly ash (FA) and blast furnace slag (BS) was deduced by analyzing the performance of high volume supplementary cementitious materials (SCMs) cement mortar depending on various combinations of cement, FA, and BS. As a result, increased workability was shown with increased the portion of FA, while air content, setting time, and compressive strength were decreased.

  • PDF

물리적으로 활성화된 플라이애쉬를 함유한 시멘트 및 복합체의 이산화탄소 배출량 평가 (Strength-based Evaluation of CO2 Emission for Cement and Composite Containing Mechanically Sctivated Fly Ash)

  • 순양;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.125-126
    • /
    • 2021
  • Fly ash, has been widely used as one of the main supplementary cementitious materials (SCMs) in the world, to replace part of cement to significantly save energy and reduce greenhouse emission. Via mechanical activation, fly ash can replace more cement without impairing early age compressive strength. This study focuses on the strength-based evaluation of carbon dioxide emission for blended cement composite containing mechanically activated fly ash. Results indicate that under similar compressive strength, a prominent drop has been witnessed in embodied energy of binary cement and CO2 emission of the composite containing mechanically activated fly ash compared with those containing ordinary fly ash.

  • PDF

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.