Browse > Article
http://dx.doi.org/10.12989/cac.2016.17.5.655

Prediction of chloride binding isotherms for blended cements  

Ye, Hailong (College of Civil Engineering and Architecture, Zhejiang University)
Jin, Xianyu (College of Civil Engineering and Architecture, Zhejiang University)
Chen, Wei (College of Civil Engineering and Architecture, Zhejiang University)
Fu, Chuanqing (College of Civil Engineering and Architecture, Zhejiang University)
Jin, Nanguo (College of Civil Engineering and Architecture, Zhejiang University)
Publication Information
Computers and Concrete / v.17, no.5, 2016 , pp. 655-672 More about this Journal
Abstract
A predictive model for chloride binding isotherms of blended cements with various supplementary cementitious materials (SCMs) was established in this work. Totally 560 data points regarding the chloride binding isotherms of 106 various cements were collected from literature. The total amount of bound chloride for each mixture was expressed a combinational function of the predicted phase assemblage and binding isotherms of various hydrated phases. New quantitative expressions regarding the chloride binding isotherms of calcium-silicate-hydrate (C-S-H), AFm, and hydrotalcite phases were provided. New insights about the roles of SCMs on binding capabilities of ordinary portland cements (OPC) were discussed. The proposed model was verified using separate data from different sources and was shown to be reasonably accurate.
Keywords
cement; corrosion; degradation; computer-aided design & integration; reinforced concrete (RC);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Baroghel-Bouny, V., Wang, X., Thiery, M., Saillio, M. andd Barberon, F. (2012), "Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis", Cement Concrete Res., 42(9), 1207-1224.   DOI
2 Boulfiza, M., Sakai, K., Banthia, N. and Yoshida, H. (2003), "Prediction of chloride ions ingress in uncracked and cracked concrete", ACI Mater. J., 100(1).
3 Brouwers, H. (2004), "The work of Powers and Brownyard revisited: Part 1", Cement Concrete Res., 34(9), 1697-1716.   DOI
4 Castellote, M., Andrade, C. and Alonso, C. (1999), "Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments", Cement Concrete Res., 29(11), 1799-1806.   DOI
5 Chen, W. (2016), "Study on chloride binding and transportation of mortars in salt-fog wetting-drying environments (in Chinese)", (Master of Science), Zhejiang University.
6 De Weerdt, K., Orsakova, D. and Geiker, M. (2014), "The impact of sulphate and magnesium on chloride binding in Portland cement paste", Cement Concrete Res., 65, 30-40.   DOI
7 Delagrave, A., Marchand, J., Ollivier, J.P., Julien, S. and Hazrati, K. (1997), "Chloride binding capacity of various hydrated cement paste systems", Adv. Cement Mater., 6(1), 28-35.   DOI
8 Florea, M. and Brouwers, H. (2012), "Chloride binding related to hydration products: Part I: Ordinary Portland Cement", Cement Concrete Res., 42(2), 282-290.   DOI
9 Fu, C., Jin, X., Ye, H. and Jin, N. (2015), "Theoretical and experimental investigation of loading effects on chloride diffusion in saturated concrete", J. Adv. Concrete Tech., 13(1), 30-43.   DOI
10 Yang, Z., Fischer, H. and Polder, R. (2012), Possibilities for improving corrosion protection of reinforced concrete by modified hydrotalcites-a literature review Advances in Modeling Concrete Service Life (pp. 95-105), Springer.
11 Ye, H., Fu, C., Jin, N. and Jin, X. (2015), "Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition", Comput. Concrete, 15(2), 183-198.   DOI
12 Ye, H., Jin, N., Jin, X. and Fu, C. (2012), "Model of chloride penetration into cracked concrete subject to drying-wetting cycles", Constr. Build. Mater., 36, 259-269.   DOI
13 Ye, H., Jin, X., Fu, C., Jin, N., Xu, Y. and Huang, T. (2016), "Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation", Constr. Build. Mater., 112, 457-463.   DOI
14 Ye, H., Tian, Y., Jin, N., Jin, X. and Fu, C. (2013), "Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions", Constr. Build. Mater., 47, 66-79.   DOI
15 Zibara, H. (2001), "Binding of external chlorides by cement pastes", Ph.D. Thesis, Universityof Toronto.
16 Zibara, H., Hooton, R., Thomas, M. and Stanish, K. (2008), "Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures", Cement Concrete Res., 38(3), 422-426.   DOI
17 Arya, C. and Xu, Y. (1995), "Effect of cement type on chloride binding and corrosion of steel in concrete", Cement Concrete Res., 25(4), 893-902.   DOI
18 Amey, S.L., Johnson, D.A., Miltenberger, M.A. and Farzam, H. (1998), "Predicting the service life of concrete marine structures: an environmental methodology", ACI Struct. J., 95(2), 205-214.
19 Angst, U., Elsener, B., Larsen, C.K. and Vennesland, O. (2009), "Critical chloride content in reinforced concrete-a review", Cement Concrete Res., 39(12), 1122-1138.   DOI
20 Arya, C., Buenfeld, N. and Newman, J. (1990), "Factors influencing chloride-binding in concrete", Cement Concrete Res., 20(2), 291-300.   DOI
21 Kulik, D., Berner, U. and Curti, E. (2003), "Modelling chemical equilibrium partitioning with the GEMSPSI code", PSI Scientific Report, 4, 109-122.
22 Hirao, H., Yamada, K., Takahashi, H. and Zibara, H. (2005), "Chloride binding of cement estimated by binding isotherms of hydrates", J. Adv. Concrete Tech., 3(1), 77-84.   DOI
23 Ipavec, A., Vuk, T., Gabrovsek, R. and Kaucic, V. (2013), "Chloride binding into hydrated blended cements: The influence of limestone and alkalinity", Cement Concrete Res., 48, 74-85.   DOI
24 Kayali, O., Khan, M. and Ahmed, M.S. (2012), "The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag", Cement Concrete Compos., 34(8), 936-945.   DOI
25 Lee, M.K., Jung, S.H. and Oh, B.H. (2013), "Effects of carbonation on chloride penetration in concrete", ACI Mater. J., 110(5).
26 Loser, R., Lothenbach, B., Leemann, A. and Tuchschmid, M. (2010), "Chloride resistance of concrete and its binding capacity-Comparison between experimental results and thermodynamic modeling", Cement Concrete Compos., 32(1), 34-42.   DOI
27 Lothenbach, B. and Gruskovnjak, A. (2007), "Hydration of alkali-activated slag: thermodynamic modelling", Adv. Cement Res., 19(2), 81-92.   DOI
28 Lothenbach, B., Scrivener, K. and Hooton, R. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256.   DOI
29 Luo, R., Cai, Y., Wang, C. and Huang, X. (2003), "Study of chloride binding and diffusion in GGBS concrete", Cement Concrete Res., 33(1), 1-7.   DOI
30 Martin-Pérez, B., Zibara, H., Hooton, R. and Thomas, M. (2000), "A study of the effect of chloride binding on service life predictions", Cement Concrete Res., 30(8), 1215-1223.   DOI
31 Mien, T.V., Nawa, T. and Stitmannaithum, B. (2014), "Chloride binding isotherms of various cements basing on binding capacity of hydrates", Comput. Concrete, 13(6), 695-707.   DOI
32 Mien, T.V., Stitmannaithum, B. and Nawa, T. (2009), "Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects", Comput. Concrete, 6(5), 421-435.   DOI
33 Neville, A. (1995), "Chloride attack of reinforced concrete: an overview", Mater. Struct., 28(2), 63-70.   DOI
34 Richardson, I. (2008), "The calcium silicate hydrates", Cement Concrete Res., 38(2), 137-158.   DOI
35 Sergi, G., Yu, S. and Page, C. (1992), "Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment", Mag Concrete Res., 44(158), 63-69.   DOI
36 Tang, L. and Nilsson, L.O. (1993), "Chloride binding capacity and binding isotherms of OPC pastes and mortars", Cement Concrete Res., 23(2), 247-253.   DOI
37 Thomas, M., Hooton, R., Scott, A. and Zibara, H. (2012), "The effect of supplementary cementitious materials on chloride binding in hardened cement paste", Cement Concrete Res., 42(1), 1-7.   DOI
38 Vu, K.A.T. and Stewart, M.G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Safe., 22(4), 313-333.   DOI