• Title/Summary/Keyword: supersonic nozzle

Search Result 416, Processing Time 0.025 seconds

An Analysis of Supersonic Jet Noise with a Converging-Diverging Nozzle (C-D 노즐을 고려한 초음속 제트 소음 해석)

  • Kim Yong Seok;Lee Duck Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2001
  • To investigate the generation mechanism of the shock-associated noise, an underexpanded supersonic jet from an axisymmetic nozzle is simulated under the conditions of the Nozzle exit Mach number of 2 and the exit pressure ratio of Pe/Pe =1.5. The present simulation is performed based on the high-order accuracy and high-resolution ENO (Essentially Non-Oscillatory) scheme to capture the time-dependent flow structure representing the sound source. It was found that the shock-associated noise is generated by the weak interaction between the downstream propagating large turbulence structures of the jet flow and the quasi-periodic shock cell structure during the one is passing through the other. The directivity of propagating waves to the upstream is clearly shown in the visualization of pressure field. It is shown that the present calculation of the centerline pressure distribution is in fare agreement with the experimental data at the location of first shock cell.

  • PDF

A CFD study on the Supersonic Flow through a Dual Bell Nozzle

  • Gopalapillai, Rajesh;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.324-330
    • /
    • 2012
  • Dual bell nozzle is one of the most promising choices among the altitude adaptation nozzles. This facilitates having a forced, steady and symmetrical separation at lower altitudes and a controlled flow separation at the wall inflection point which prevents the generation of dangerous side loads. In order to ensure the attached flow in the second bell, a clear understanding of the flow transition is required. Hence the motivation of our study is to arrive at an optimum profile for the second bell, which allows a sudden and controlled transition. In this work, we designed the first bell using the conventional MoC and the second bell using an inverse MoC, imposing a pressure gradient constraint. A CFD analysis is also carried out. It is found that the separation point is near the inflection point within one fourth of the extension length or it is near the exit.

  • PDF

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (The effects of the assistant jet pressure ratio) (초음속 환형동축 자유 제트유동에 관한 실험적 연구 (보조제트 압력비 영향에 관하여))

  • 이권희;이준희;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.51-58
    • /
    • 2001
  • Supersonic, axisymmetric, jets issuing from several kinds of dual, coaxial, nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major. features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with different impinging angle on the jet axis of were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular. nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio lead to a longer supersonic length of the dual, coaxial jet.

  • PDF

Development and Operating Test of the Supersonic Wind Tunnel with $25cm{\times}20cm$ Test Section ($25cm{\times}20cm$ 초음속 풍동 개발 및 시험 평가)

  • Kim, Sei-Hwan;Park, Ji-Hyun;Lee, Seung-Bok;Jeung, In-Seuck;Lee, Hyung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.777-780
    • /
    • 2011
  • The supersonic wind tunnel is a common facility to studies the aerodynamic phenomenon around the high speed vehicle or weapon system whose operating speed is greater than sonic speed. In this study, a design procedure and selecting the components of a new supersonic wind tunnel whose nozzle exit is $125mm{\times}100mm$ is considered. An operating test of this wind tunnel is being conducted to compare the result with the design values, mach number, etc.

  • PDF

Study of Micro-Supersonic Impinging Jets and Its Application to the Laser Machining (마이크로 초음속제트의 충돌유동과 레이저 가공 응용에 관한 연구)

  • Min, Seong-Kyu;Yu, Dong-Ok;Lee, Yeol;Cheong, Jo-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • Characteristics of micro-sonic/supersonic axi-symmetric jet impinging on a flat plate with a pre-drilled hole were both experimentally and numerically studied, to observe the role of assist-gas jet to eject melted materials from the cut zone in the laser machining. For various Mach numbers of the nozzle and the total pressures of the assist gas, detailed impinging jet flow structures over the plate and the variations of mass flux through the pre-drilled hole were observed. It was found that the present experimental and numerical results show a good agreement, which proves the accountability of the present work. From the present study, it was also observed that the mass flow rate through the hole was closely related with the total pressure loss caused by the Mach disc on the work piece, and that supersonic nozzle could perform more efficient roles as blowing the assist-gas jet in the laser machining, as compared to sonic nozzles.

An Analytical Study on Supersonic Under-Expanded Jet (초음속 부족팽창 제트유동에 관한 해석적 연구)

  • 김희동;이호준;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.75-84
    • /
    • 1997
  • Based upon the results of numerical calculation. empirical scaling equations were made for supersonic under-expanded jets in both axisymmetric and two dimensional flows. The objective of the present study is to obtain a straightforward method that can predict the under-expanded supersonic jets issuing from various kinds of nozzles. The present empirical equations were agreed with the calculation results of total variation diminishing difference scheme. The supersonic under-expanded jets operating with a given pressure ratio could be well predicted by the present scaling equations.

  • PDF

An Experimental Study of the Variable Sonic/supersonic Ejector Systems (가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구)

  • Lee Jun Hee;Kim Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.

Study of Starting Pressure of a Supersonic Ejector with a Second-Throat (이차목을 갖는 초음속 이젝터 작동압력에 대한 연구)

  • Jin, Jung-Kun;Kwon, Se-Jin;Kim, Se-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.934-939
    • /
    • 2005
  • Starting pressure of a supersonic ejector with a second-throat was investigated. In case of mixing chamber length longer than a critical length, starting pressure is in proportion to length of the mixing chamber. In this study, we assumed that the ejector starts when the primary supersonic flow reaches inlet of the second-throat and the distance of the supersonic flow traveling can be expressed by multiplying an empirical factor to the first diamond shock length of overexpanded flow. To calculate the overexpanded supersonic flow, a mixing model was employed to compute secondary flow pressure and the result was applied to back pressure condition of overexpanded flow calculation. In the result, for three cases of primary nozzle area ratio, we could get accurate model of predicting the starting pressure by selecting a suitable empirical factors around 3.

Control of the Supersonic Jet Noise Using a Wire Device (와이어 장치를 이용한 초음속 제트소음의 제어)

  • Kweon Yong Hun;Lim Chae Min;Aoki Toshiyuki;Kim Heuy Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.64-67
    • /
    • 2004
  • The present study describes an experimental work to reduce supersonic jet noise using a control wire device that is placed into the supersonic jet stream. The jet pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded conditions. The wire device is composed of long cylinders with a very small diameter. X-type wire device is applied to control the supersonic jet noise, and its location is varied to investigate the effect of the control wire device on supersonic jet noise. A high-quality Schlieren optical system is used to visualize the flow field of supersonic jet with and without the control wire device. Acoustic measurement is performed to obtain the overall sound pressure level and noise spectra. The results obtained show that the present wire device destroys the shock-cell structures, reduces the shock strength, and consequently leading to a substantial suppression of supersonic jet noise.

  • PDF