• Title/Summary/Keyword: supersingular prime

Search Result 4, Processing Time 0.02 seconds

Efficient Implementations of Index Calculation Methods of Elliptic Curves using Weil's Theorem (Weil 정리를 이용한 효율적인 타원곡선의 위수 계산법의 구현)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.693-700
    • /
    • 2016
  • It is important that we can calculate the order of non-supersingular elliptic curves with large prime factors over the finite field GF(q) to guarantee the security of public key cryptosystems based on discrete logarithm problem(DLP). Schoof algorithm, however, which is used to calculate the order of the non-supersingular elliptic curves currently is so complicated that many papers are appeared recently to update the algorithm. To avoid Schoof algorithm, in this paper, we propose an algorithm to calculate orders of elliptic curves over finite composite fields of the forms $GF(2^m)=GF(2^{rs})=GF((2^r)^s)$ using Weil's theorem. Implementing the program based on the proposed algorithm, we find a efficient non-supersingular elliptic curve over the finite composite field $GF(2^5)^{31})$ of the order larger than $10^{40}$ with prime factor larger than $10^{40}$ using the elliptic curve $E(GF(2^5))$ of the order 36.

ON THE p-PRIMARY PART OF TATE-SHAFAREVICH GROUP OF ELLIPTIC CURVES OVER ℚ WHEN p IS SUPERSINGULAR

  • Kim, Dohyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.407-416
    • /
    • 2013
  • Let E be an elliptic curve over $\mathbb{Q}$ and $p$ be a prime of good supersingular reduction for E. Although the Iwasawa theory of E over the cyclotomic ${\mathbb{Z}}_p$-extension of $\mathbb{Q}$ is well known to be fundamentally different from the case of good ordinary reduction at p, we are able to combine the method of our earlier paper with the theory of Kobayashi [5] and Pollack [8], to give an explicit upper bound for the number of copies of ${\mathbb{Q}}_p/{\mathbb{Z}}_p$ occurring in the $p$-primary part of the Tate-Shafarevich group of E over $\mathbb{Q}$.

RESIDUAL SUPERSINGULAR IWASAWA THEORY OVER QUADRATIC IMAGINARY FIELDS

  • Parham Hamidi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1035-1059
    • /
    • 2023
  • Let p be an odd prime. Let E be an elliptic curve defined over a quadratic imaginary field, where p splits completely. Suppose E has supersingular reduction at primes above p. Under appropriate hypotheses, we extend the results of [17] to ℤ2p-extensions. We define and study the fine double-signed residual Selmer groups in these settings. We prove that for two residually isomorphic elliptic curves, the vanishing of the signed 𝜇-invariants of one elliptic curve implies the vanishing of the signed 𝜇-invariants of the other. Finally, we show that the Pontryagin dual of the Selmer group and the double-signed Selmer groups have no non-trivial pseudo-null submodules for these extensions.

An Implementation of Supersingular Isogeny Diffie-Hellman and Its Application to Mobile Security Product (초특이 아이소제니 Diffie-Hellman의 구현 및 모바일 보안 제품에서의 응용)

  • Yoon, Kisoon;Lee, Jun Yeong;Kim, Suhri;Kwon, Jihoon;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • There has been increasing interest from NIST and other companies in studying post-quantum cryptography in order to resist against quantum computers. Multivariate polynomial based, code based, lattice based, hash based digital signature, and isogeny based cryptosystems are one of the main categories in post quantum cryptography. Among these categories, isogeny based cryptosystem is known to have shortest key length. In this paper, we implemented Supersingular Isogeny Diffie-Hellman (SIDH) protocol efficiently on low-end mobile device. Considering the device's specification, we select supersingular curve on 523 bit prime field, and generate efficient isogeny computation tree. Our implementation of SIDH module is targeted for 32bit environment.