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RESIDUAL SUPERSINGULAR IWASAWA THEORY OVER

QUADRATIC IMAGINARY FIELDS

Parham Hamidi

Abstract. Let p be an odd prime. Let E be an elliptic curve defined

over a quadratic imaginary field, where p splits completely. Suppose
E has supersingular reduction at primes above p. Under appropriate

hypotheses, we extend the results of [17] to Z2
p-extensions. We define and

study the fine double-signed residual Selmer groups in these settings. We

prove that for two residually isomorphic elliptic curves, the vanishing of

the signed µ-invariants of one elliptic curve implies the vanishing of the
signed µ-invariants of the other. Finally, we show that the Pontryagin

dual of the Selmer group and the double-signed Selmer groups have no

non-trivial pseudo-null submodules for these extensions.

1. Introduction

Consider two elliptic curves defined over Q with good ordinary reduction
at prime p whose residual Galois representations are isomorphic. Greenberg
and Vatsal in [7] showed that the vanishing of the µ-invariant attached to
the Pontryagin dual of the Selmer group over the cyclotomic Zp-extension of
one curve implies the vanishing of the µ-invariant for the other. Their work
uses an auxiliary Selmer group called nonprimitive dual Selmer group which
has the same µ-invariant as the Pontryagin dual of the Selmer group. For an
elliptic curve E/Q with good supersingular reduction at p, the Selmer group
over the cyclotomic extension is no longer cotorsion. Kobayashi in [12] defined
the signed Selmer group over the cyclotomic Zp-extension using moderately
stronger local conditions at p and showed that they are cotorsion over Iwasawa
modules. A similar approach has been taken in the study of elliptic curves
with supersingular reduction for the signed Selmer groups. The µ-invariants of
the Pontryagin dual of the signed Selmer groups are referred to as the signed
µ-invariants. An analogue of Greenberg–Vatsal was proved by B. D. Kim in
[11] for the signed µ-invariants over cyclotomic Zp-extension using nonprimi-
tive dual Selmer groups. Later, in [17] the authors used a new technique to
work with residual representations of elliptic curves and they improved upon
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the results of Kim in [11]. They defined a new Selmer group called the fine
residual signed Selmer group and studied its structure as an Iwasawa module,
in particular, the vanishing of the signed µ-invariants (cf. [17, Theorem 4.12]).

In this paper, we follow the strategy of [17] to prove new results for the
signed µ-invariants of Z2

p-extensions of quadratic imaginary fields. However,

the Iwasawa theory of Z2
p-extensions has additional technicalities compared

to the cyclotomic Zp-extensions. We define the fine signed residual Selmer
groups in these settings (cf. Definition 2.2). In Proposition 3.3 we show that
these residual singed Selmer groups depend only on the isomorphism class of
the residual Galois representation of elliptic curves. Therefore, these groups
provide a natural method to study congruences of elliptic curves. We then
relate the structure of the fine signed residual Selmer groups to that of the
signed Selmer groups as Iwasawa modules (cf. Proposition 4.4). Theorem 4.5
relates the module structure of the fine signed residual Selmer groups to the
vanishing of the signed µ-invariants. We use this theorem to show that if two
elliptic curves have isomorphic residual representations, then vanishing of the
signed µ-invariants for one implies the same for the other. Furthermore, we
relate these results to analogous results over cyclotomic extensions proved in
[17] (cf. Corollary 4.12).

Moreover, we prove in that the Pontryagin dual of the signed Selmer groups
and the classical Selmer group have no non-zero pseudo-null submodules (cf.
Theorem 5.7). This is an important property for an Iwasawa module, since
the structure of finitely generated modules over commutative Iwasawa alge-
bras is known up to pseudo-isomorphism. Hence, whenever such modules have
no non-zero pseudo-null submodules we have a better understanding of their
structure. To this, we invoke Auslander–Buchsbaum–Serre formula and com-
pute the depth of the signed Selmer groups by studying Galois cohomology of
these groups.

This paper consists of five sections including this introductory section and
it is organized as follows. In Section 2, we introduce preliminary definitions,
notations, and assumptions. Our goal in Section 3 is to prove some of the
essential components of the proof of our main results. In Section 4, we prove
Theorem 4.5 and record some important consequences of it. Finally, in Section
5 we use purely algebraic tools to compute the depth of signed Selmer groups
and prove Theorem 5.7 which states that the Pontryagin dual of the Selmer
group and the double-signed Selmer groups have no non-trivial pseudo-null
submodules.

2. Preliminaries

Let E/L be an elliptic curve defined over a quadratic imaginary number field
L/Q. Suppose p is an odd prime and let Sp denote the set of all primes of L
over p. Denote the finite set of primes above p, where E/L has supersingular
reduction by Sss ⊆ Sp and let Sbad denote the finite set of primes in L, where
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E has bad reduction. Let S be the disjoint union of the sets Sp and Sbad.
For any field extension L/L, let Sp(L) be the set primes in L above the set
Sp. Similarly, let S∗(L) for ∗ ∈ {∅, bad, ss} denote the set of primes in L
above the corresponding finite set S∗. Throughout this article we assume the
following hypotheses, which we refer to as Hyp 1.

Hyp 1(i): The prime p is odd.
Hyp 1(ii): The number field L/Q is a quadratic imaginary field extension.

Furthermore, assume that p splits completely in L/Q. We denote
the primes of L over p by p and p̄. In particular, p ̸= p̄ and
Lp = Lp̄ = Qp.

Hyp 1(iii): The elliptic curve E/L has good supersingular reduction at both
primes above prime p. Therefore, the sets Sss = Sp = {p, p̄}.

Hyp 1(iv): We have ap = 1 +NL/Q(p)−#Ẽp(OL/p) = ap̄ = 0, where NL/Q :

L→ Q is the usual norm map and Ẽp is the reduced curve modulo
p.

Let Lcyc/L denote the cyclotomic Zp-extension of L and let L∞/L denote
the compositum of all Zp-extensions of L. Leopoldt’s conjecture implies that
Gal(L∞/L) ∼= Z2

p. Note that Leopoldt’s conjecture is known for abelian ex-
tensions of rational numbers, and therefore it is not a hypothesis in this case
(cf. Corollary 5.32 and Theorem 13.4 of [22]). Let LS be the maximal algebraic
extension of L unramified outside of the primes inside S and GSL denote the
Galois group of the extension LS/L. Note that L∞ ⊂ LS . Let

GS∞ := Gal(LS/L∞), G := Gal(L∞/L) ∼= Z2
p, and Γ := Gal(Lcyc/L) ∼= Zp.

Given a prime w in Sp(L∞), by abuse of notation, let the prime below w in
Ln be again denoted by w. It should be clear from the context whether the
prime w is in Ln for some n ≥ 0 or is in L∞. Finally, for an abelian group
M and an integer t ≥ 1 we write Mt for the subgroup of elements of M that
are annihilated by t. Moreover, for a prime p, we define the p-primary torsion
subgroup of M , which we denote by Mp∞ , as

Mp∞ := ∪i≥1Mpi .

2.1. Plus and minus norm groups

Suppose K/Qp is a finite unramified extension of Qp. Denote the cyclo-
tomic (resp. the unramified) Zp-extension of K by Kcyc (resp. Kur) which is
totally ramified. For any integer r ≥ 0, let Kr be the unique intermediate
field extension of Kcyc/K such that Gal(Kr/K) = Z/prZ and for any integer

l ≥ 0, let K(l) be the unique intermediate field extension of Kur/K such that

Gal(Kl/K) is isomorphic to Z/plZ. Further, let K(l)
r be KlKr, so Gal(K

(l)
r /K)

is Z/plZ× Z/prZ and

Kur
cyc = KurKcyc = ∪r,l≥0K

lKr,
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with Gal(Kur
cyc/K) equal to Z2

p. Let µpr denote the pr-th roots of unity and

let K(l)
r to be K(l)(µpr+1) for l ≥ 0 and r ≥ −1. For all l, r ≥ 0, denote

∆ := Gal(K(µp)/K) = Gal(K(0)
0 /K

(0)
0 ) ∼= Gal(Klr/Kl

r).(1)

In this article, with abuse of notation, we write (K(l)
r )∆ is equal to K

(l)
r .

In what follows, let Ê(mL) by Ê(L), where L/Qp is any local field over Qp
and mL is the maximal ideal of the valuation ring of L. Denote the ring of

integers of L by OL. Suppose E/Qp is an elliptic curve and let Ê denote the
formal group over Zp associated to the minimal model of E over Qp.

Definition 2.1. Following [12, Definition 8.16], define the plus and minus
norm groups as

Ê±(K(l)
r ) :=

{
P ∈ Ê(K(l)

r ) | Trrm+1(P ) ∈ Ê(K(l)
m ),−1 ≤ m ≤ r − 1 s.t. (−1)m = ±1

}
,

E±(K(l)
r ) :=

{
P ∈ E(K(l)

r ) | Trrm+1(P ) ∈ E(K(l)
m ),−1 ≤ m ≤ r − 1 s.t. (−1)m = ±1

}
,

Ê±(K(l)
r ) :=

(
Ê±(K(l)

r )
)∆

, and E±(K(l)
r ) :=

(
E±(K(l)

r )
)∆

,

Ê±(K(ur)
cyc ) :=

⋃
r,l≥0

Ê±(K(l)
r ), and E±(Kur

cyc) :=
⋃
r,l≥0

Ê±(K(l)
r ).

Suppose E/Qp is an elliptic curve with good reduction at p and such that

ap = 0. Then, by Proposition 8.7 of [12], for all l, r ≥ 0, Ê(K(l)
r ) has no

non-trivial p-torsion points. This implies that

E(K(l)
r )p = E(K(l)

r )p = {0}.(2)

2.2. Signed Kummer maps

Suppose L and S are as Hyp 1. For any n ≥ 0, let Ln be the unique
sub-extension of L∞/L such that

Gal(Ln/L) ∼= (Z/pnZ)2, L = L0, L∞ := ∪n≥0Ln.(3)

For simplicity, let GSn denote Gal(LS/Ln). Note that if w|v is a prime of L∞
not above p, then L∞,w is the unique unramified Zp-extension (cf. for example

[22, Proposition 13.2]) of the local field Lv. Let L ∈ {K(l)
r ,K(l)

r , Ln} and
G ∈ {G

K
(l)
r
, GK(l)

r
, GSn}. For any integer t ≥ 0, there is a short exact sequence

of G-modules

0 −→ E(L)/ptE(L)
κpt

L−−→ H1(G, Ept) −→ H1(G, E)pt −→ 0,

where the map κp
t

L is the Kummer map for Ept over L. Taking the direct limit
of the above sequence we obtain the following

0 −→ E(L)⊗Qp/Zp
κp∞
L−−−→ H1(G, Ep∞) −→ H1(G, E)p∞ −→ 0.
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For v ∈ S, we define the local condition

Jv(Ep∞/Ln) :=
⊕
w|v

H1(Ln,w, E)p∞ ∼=
⊕
w|v

H1(Ln,w, Ep∞)

E(Ln,w)⊗Qp/Zp
,(4)

where the isomorphism is due to the Kummer map (cf. [4, Section 1.6]). The
classical p∞-Selmer group of the elliptic curve E over Ln is defined by the
following sequence

(5) 0 −→ Sel(Ep∞/Ln)→ H1(LS/Ln, Ep∞)
λn−−→

⊕
v∈S

Jv(Ep∞/Ln),

where λn consists of restriction maps coming from Galois cohomology. By
definition of the plus/minus norm groups, there are inclusions

E±(Ln,w) ↪−→ E(Ln,w), and Ê
±(Ln,w) ↪−→ Ê(Ln,w),

where w is a prime in Ln above p, mn is the maximal ideal of the ring of
integers of Ln,w(µp). By Lemma 3.4 of [17], the above maps remain injective
after applying the functor −⊗ Z/pt for any t ≥ 1

E±(Ln,w)/p
tE±(Ln,w) E(Ln,w)/p

tE(Ln,w),

where w is a prime in Ln above p. The Kummer map κp
t

L induces the following
injective map

(6) κ±,p
t

Ln,w
: E±(Ln,w)/p

tE±(Ln,w) H1(Ln,w, Ept).

Similarly, for any n, t ≥ 1, there is an injection

κ±,p
t

Ln,w
: Ê±(Ln,w)/p

tÊ±(Ln,w) H1(Ln,w, Êpt).

Refer to the maps κ±,p
t

Ln,w
as the signed Kummer maps for Ept over Ln,w.

2.3. Selmer group, signed Selmer groups, and fine signed residual
Selmer groups

Let E/L be an elliptic curve satisfying Hyp 1 and let Ln/L be as in (3).
If w belongs to Sss(Ln) = Sp(Ln), then w|p or w|p̄, by Hyp 1(iii). Denote a
prime in Ln which lies over p (resp. p̄) by q (resp. q̄). Similarly, if w ∈ Sp(L∞)
and w|p (resp. w|p̄), denote w by q (resp. q̄). Finally, if q (resp. q̄) is in L∞,
denote its restriction to Ln again by q (resp. q̄). It should be clear from the
context whether q and p̄ represent primes in Ln or in L∞. Following [17], for
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v ∈ S define the local cohomological groups

(7) ±K̃v(Ep/Ln) :=



⊕
w|l

H1(Ln,w, Ep) if v = l ∈ Sbad,

⊕
q|p

H1(Ln,q, Ep)/Im κ±,pLn,q
if v = p ∈ Sss,

⊕
q̄|p̄

H1(Ln,q̄, Ep)/Im κ±,pLn,q̄
if v = p̄ ∈ Sss.

Similarly

(8) J±
v (Ep∞/Ln) :=



⊕
w|l

H1(Ln,w, Ep∞) if v = l ∈ Sbad,

⊕
q|p

H1(Ln,q, Ep∞)/Im κ±,p
∞

Ln,q
if v = p ∈ Sss,

⊕
q̄|p̄

H1(Ln,q̄, Ep∞)/Im κ±,p
∞

Ln,q̄
if v = p̄ ∈ Sss.

Here, when v ∈ Sss, the sign of ±K̃v(Ep/Ln) (resp. J
±
v (Ep∞/Ln)) agrees with

the choice of the sign of the Kummer map κ±,p (resp. κ±,p
∞
) in the direction

of q|p or in the direction of q̄|p̄. When v ∈ Sbad, the sign choice of the sign
does not matter. Similarly, when v ∈ Sbad then J±

v (Ep∞/Ln) coincides with
Jv(Ep∞/Ln) for any choice of the sign. The following definition is the analogue
of [17, Definition 3.6] over Z2

p-extensions.

Definition 2.2. Let n ≥ 0. For every intermediate field Ln in the tower L∞/L,

let ±K̃v(Ep/Ln) be as (7) for any v ∈ S. Define the fine signed residual Selmer

group R±/±(Ep/Ln) of Ep over Ln by:

R±/±(Ep/Ln) := ker

(
H1(GSn , Ep)→

⊕
v∈S

±K̃v(Ep/Ln)

)
.

The choice of the first sign of R±/±(Ep/Ln) is in accordance with the choice

of +K̃p(Ep/Ln) or
−K̃p(Ep/Ln) and the second sign is in accordance with the

choice of +K̃p̄(Ep/Ln) or
−K̃p̄(Ep/Ln).

Here, we use the notation R±/±(Ep/Ln) for convenience. It unifies nota-

tion for any of the four possibilities: “R+/+(Ep/Ln), or R+/−(Ep/Ln), or

R−/+(Ep/Ln), or R−/−(Ep/Ln)”. Similar notation is used throughout the
article for simplicity.

Definition 2.3. For every n ≥ 0 let J±
v (Ep∞/Ln) be as (8) for any v ∈ S.

Define the signed Selmer groups Sel±/±(Ep∞/Ln) of Ep∞ over the intermediate
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field Ln in the tower L∞/L as follows:

Sel±/±(Ep∞/Ln) := ker

(
H1(GSn , Ep∞)→

⊕
v∈S

J±
v (Ep∞/Ln)

)
.

The first sign of Sel±/±(Ep∞/Ln) corresponds to the choice of J+
p (Ep∞/Ln) or

J−
p (Ep∞/Ln) and the second sign corresponds to the choice of J+

p̄ (Ep∞/Ln) or

J−
p̄ (Ep∞/Ln).

Remark 2.4. Suppose S′ is a finite set of primes containing set S. Then for

any prime v ∈ S′\S, define the local condition J±
v (Ep∞/Ln) or ±K̃v(Ep/Ln)

the same way we did for the bad primes in Sbad. We note that adding a finite
set of primes to the set S does not change these Selmer groups (cf. Chapter 1,
Section 1.7 of [2]).

Let Gn := Gal(Ln/L). Then, there is an exact sequence of Λ(Gn)-modules
(resp. Ω(Gn)-modules):

(9) 0 −→ Sel±/±(Ep∞/Ln) −→ H1(GSn , Ep∞) −→
⊕
v∈S

J±
v (Ep∞/Ln)

resp.

(10) 0 −→ R±/±(Ep/Ln) −→ H1(GSn , Ep) −→
⊕
v∈S

±K̃v(Ep/Ln).

By taking the direct limit over the intermediate field extensions Ln of the exact
sequences (5), (9), and (10) we obtain

0 −→ Sel(Ep∞/L∞) −→ H1(GS∞, Ep∞)
λ∞−−→

⊕
v∈S

Jv(Ep∞/L∞),(11)

0 −→ Sel±/±(Ep∞/L∞) −→ H1(GS∞, Ep∞)
ξ±/±

−−−→
⊕
v∈S

J±
v (Ep∞/L∞),(12)

0 −→ R±/±(Ep/L∞) −→ H1(GS∞, Ep)
ξ±/±
p−−−→

⊕
v∈S

±K̃v(Ep/L∞).(13)

The above exact sequences (11), (12), and (13) have a natural G-action. This
action gives these Selmer groups a module structure over Iwasawa algebras,
which we now introduce.

Definition 2.5. The Iwasawa algebra of G, denoted by Λ(G) (resp. Ω(G)), to
be the completed group algebra of G over Zp (resp. Fp). That is,

Λ(G) := Zp[[G]] = lim←−
N⊂G

Zp[G/N ], (resp. Ω(G) := Fp[[G]] = Λ(G)/pΛ(G)),

where N runs over open normal sub-groups of G.
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In this article, we deal with G ∼= Znp from some n ∈ {1, 2}. When the group

G = G ∼= Z2
p then n = 2 and when we have G = Γ ∼= Zp then n = 1. The Iwa-

sawa algebra Λ(G) (resp. Ω(G)) is isomorphic to the ring of formal power series
Zp[[T1, . . . , Tn]] (resp. Fp[[T1, . . . , Tn]]) with indeterminate variables T1, . . . , Tn.
Therefore Λ(G) is a commutative, regular local ring of Krull dimension n+ 1.

Note that (11) and (12) are exact sequences of Λ(G)-modules and (13) is
an exact sequence of Ω(G)-modules. Let X(Ep∞/L∞) denote the Pontryagin
dual of Sel(Ep∞/L∞). It is important to note here that X(Ep∞/L∞) is con-
jectured to have positive rank, and therefore it is not a torsion Λ(G)-module.
This is shown over the cyclotomic Zp-extensions (cf. [4, Theorem 2.5]). For a
Galois extension with a pro-p Galois group without p-torsion which contains
the cyclotomic Zp-extension, this is conjectured to hold (cf. [18]). However,

the Pontryagin dual of the signed Selmer group Sel±/±(Ep∞/L∞), which we

denote by X±/±(Ep∞/L∞), is conjectured to be torsion as a Λ(G)-module. For
a more generalized version of this see Conjecture 4.11 of [13]. We denote

µ
±/±
G (Ep∞/L∞) := µG(X

±/±(Ep∞/L∞)),

and we call them the signed µ-invariants. Suppose that M is a discrete
cofinitely generated Λ(G)-module and letM∧ denote its Pontryagin dual. Then,
there is an isomorphism (Mp)

∧ ∼=M∧/pM∧ and the inequality

corankΛ(G)(M) ≤ corankΩ(G)(Mp).(14)

The inequality (14) becomes an equality exactly when the µ-invariant of M∧

is zero.

3. Local and global cohomology calculations

Throughout this section, we assume that E/L is an elliptic curve satis-
fying Hyp 1 and Ln/L is as defined in equation (3) for any n ≥ 0. Let
Y±/±(Ep/L∞) denote the Pontryagin dual of the fine signed residual Selmer

group R±/±(Ep/L∞) defined in Definition 2.2. Our goal in this article is to
show that if E1/L and E2/L are two elliptic curves satisfying Hyp 1 and they
are such that their residual Galois representations (E1)p and (E2)p are isomor-
phic, then

µ
±/±
G ((E1)p∞/L∞) = 0 ⇐⇒ µ

±/±
G ((E2)p∞/L∞) = 0

given that Y±/±((Ej)p/L∞) is a torsion Ω(G)-module for j ∈ {1, 2}.

3.1. Comparison of the local and global cohomology groups

Let n ≥ 0 and let Ln/L be as in (3). For convenience, given a local field
K, let GK denote the Galois group of the extension K/K, where K denotes the
separable closure of K. Suppose G ∈ {GSn , GLn,w

}, where w ∈ S(Ln). There
is a short exact sequence

(15) 0 −→ E(L)p∞/pE(L)p∞ −→ H1(G, Ep)
ψG,n−−−→ H1(G, Ep∞)p −→ 0.
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Recall that Ln,w = K
(l)
r for some l, r ≥ 0. Equation (2) tells us that E(Ln,w)p =

E(Ln)p = {0}. This means that the first term in the short exact sequence
(15) vanishes. Therefore for any n ≥ 0, the map ψG,n is an isomorphism. It
remains to investigate ψG,n when G = GLn,w

for some w ∈ Sbad(Ln). Note
that ker(ψG,n) = E(Ln,w)p∞/pE(Ln,w)p∞ has a finite Fp-dimension and by
[23, Theorem 3.2]

dimFp(ker(ψG,n)) = dimFp(E(Ln,w)p) ≤ dimFp(E(Lw)p) = 2.

Passing the exact sequence (15) to direct limit, define the surjective map

(16) ψG,∞ : H1(G, Ep) ↠ H1(G, Ep∞)p,

where G ∈ {GS∞, GL∞,w
} for w ∈ S(L∞) and GS∞ := Gal(LS∞/L∞).

Proposition 3.1. Let G ∈ {GS∞, GL∞,w
} for w ∈ S(L∞) and let ψG,∞ be the

map described in (16).

(1) If G ∈ {GS∞, GL∞,w} for w ∈ Sp(L∞), then ψG,∞ is an isomorphism.

(2) If G = GL∞,w
for w ∈ Sbad(L∞), then dimFp

(ker(ψG,∞)) ≤ 2.

Proof. The proof is similar to Proposition 4.1 in [17]. □

Suppose w ∈ S(L∞) and assume w|p (resp. w|p̄). Denote w by q (resp. by q̄)
and the isomorphism ψG,∞, where G = Gal(L∞,q/L∞,q) by ψq,∞ (resp. ψq̄,∞).

Finally, when w ∈ Sbad(L∞) then L∞,w = Lcyc,w and G = Gal(L∞,w/L∞,w).
Denote the surjective map ψG,∞ by ψw,∞.

Corollary 3.2. Let q (resp. q̄) be a prime in Sp(L∞) above p (resp. p̄). Then,
the isomorphism ψq,∞ (resp. ψq̄,∞) induces an isomorphism

ψ±
q,∞ : H1(L∞,q, Ep)/Im

(
κ±,pL∞,q

) ∼=−→
(
H1(L∞,q, Ep∞)/Im

(
κ±,p

∞

L∞,q

))
p

resp.

ψ±
q̄,∞ : H1(L∞,q̄, Ep)/Im

(
κ±,pL∞,q̄

) ∼=−→
(
H1(L∞,q̄, Ep∞)/Im

(
κ±,p

∞

L∞,q̄

))
p
.

Proof. The proof is similar to [17, Proposition 4.1, part d)]. □

3.2. Fine signed residual Selmer group and residual representations

This section explains why the fine signed residual Selmer group only de-
pends on the residual Galois representation Ep. To do this, we show that the

local conditions ±K̃v(Ep/L∞), which define the fine signed residual Selmer
group (cf. Definition 2.2), only depend on the residual Galois representation
(cf. Proposition 3.3). Suppose L is an algebraic extension of Qp. By Lemma
3.3 of [17], there exists an exact sequence

0 Ê(L) E(L) D 0,
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where D is a finite group of order prime-to-p. In particular, for any n ≥ 0 and
any prime w ∈ Sss(Ln) = Sp(Ln),

Ê±(Ln,w)⊗Qp/Zp ∼= E±(Ln,w)⊗Qp/Zp.

If w is a prime in Sss(L∞), then Ê±(L∞,w) ⊗ Qp/Zp ∼= E±(L∞,w) ⊗ Qp/Zp.
Putting this together with equation (6), for all n ≥ 0

Im κ±,p
∞

Ln,w
(E±

p∞(Ln,w)) ∼= Im κ±,p
∞

Ln,w
(Ê±

p∞(Ln,w)).(17)

Furthermore, the exact sequence (3.2) induces an isomorphism for any n ≥ 0

and any prime w ∈ Sss(Ln), H
1(Ln,w, Ep∞) ∼= H1(Ln,wÊp∞). The isomor-

phisms in the above equation and equation (17) are compatible for all n ≥ 0
and they induce the isomorphism

H1(Ln,w, Ep∞)/Im κ±,p
∞

Ln,w

∼= H1(Ln,w, Êp∞)/Im κ±,p
∞

Ln,w
.(18)

Note that for n ≥ 0 and w ∈ Sss(Ln), then Ln,w = K
(l)
r for some l, r ≥ 0. Let

O denote the ring of integers of K
(l)
0 . By Honda theory (cf. [9]), there exists a

formal group Fss in O[[X]], known as the supersingular formal group of Honda
type t2 + p which is an Eisenstein polynomial. Further, part (ii) and (iv) of

Hyp 1 implies that the formal group Ê is also of Honda type t2+p (cf. Section
8.2 of [12]). Therefore, there exists an O-isomorphism

expÊ ◦ logFss
: Fss(m)→ Ê(m),(19)

where m is the maximal ideal of the valuation ring O of the local field Ln,w.
Since the Honda type t2+p is independent of the choice of the elliptic curve, the

supersingular formal group Fss, and hence the formal group Ê by the above
isomorphism, are independent of the choice of elliptic curve E/L, assuming
E/L satisfies Hyp 1.

For simplicity we denote Fss(m) by Fss(Ln,w) and define the plus minus
norm groups F±

ss (Ln,w) ⊆ Fss(Ln,w) using the isomorphism (19)

F±
ss (Ln,w) := logFss

◦ expÊ(Ê
±(Ln,w)).

Moreover, the signed Kummer maps, defined for the formal groups in equation
(6), can be defined for the supersingular formal group Fss(Ln,w)

0→ F±
ss (Ln,w)⊗Qp/Zp

κ±,p∞
Ln,w−−−−→ H1(Ln,w, (Fss)p∞)→ H1(Ln,w, (Fss)p∞)/Im κ±,p

∞

Ln,w
→ 0.

The isomorphism (19) is O
K

(l)
0
-linear and thus it commutes with GLn,w -

action. Hence, there is an isomorphism

H1(Ln,w, (Fss)p∞)/Im κ±,p
∞

Ln,w

∼= H1(Ln,w, Êp∞)/Im κ±,p
∞

Ln,w
.(20)

Combining (18) and (20), for w ∈ Sss(Ln)

H1(Ln,w, (Fss)p∞)/Im κ±,p
∞

Ln,w

∼= H1(Ln,w, Ep∞)/Im κ±,p
∞

Ln,w
.(21)
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Since the left-hand side is independent of E, so is the right-hand side. This im-
plies that J±

p (Ep∞/Ln) and J
±
p̄ (Ep∞/Ln) are independent of the choice of E/L

for any n ≥ 0. Passing to the direct limit we have the following isomorphism

H1(L∞,w, (Fss)p∞)/Im κ±,p
∞

L∞,w

∼= H1(L∞,w, Ep∞)/Im κ±,p
∞

L∞,w
,(22)

where w ∈ Sss(L∞) = Sp(L∞) which implies that the same is true for that the
local conditions J±

p (Ep∞/L∞) and J±
p̄ (Ep∞/L∞). Suppose E1/L and E2/L

are two elliptic curves satisfying Hyp 1. Let j ∈ {1, 2} and let Sj = {p, p̄}∪Sbad
j ,

where Sbad
j is the set of primes where Ej has bad reduction. From now on, we

shall now enlarge the set S by declaring

S := S1 ∪ S2 = {p, p̄} ∪ Sbad
1 ∪ Sbad

2 .

Recall from Remark 2.4 that adding a finite set of primes to the set Sj does

not change R±/±((Ej)p/L∞) and Sel±/±((Ej)p∞/L∞).

Proposition 3.3. Let E1/L and E2/L be two elliptic curves that satisfy Hyp
1. Moreover, suppose (E1)p ∼= (E2)p as Gal(L/L)-modules. Then, there is an
isomorphism

R±/±((E1)p/L∞) ∼= R±/±((E2)p/L∞).

Proof. Let j ∈ {1, 2} and S be as above. Suppose v = p. Then, for any q|p in
L∞ by Corollary 3.2 and isomorphism (22)

H1(L∞,q, (Ej)p)/Im
(
κ±,pL∞,q

)
∼=
(
H1(L∞,q, (Ej)p∞)/Im

(
κ±,p

∞

L∞,q

))
∼=
(
H1(L∞,w, (Fss)p∞)/Im κ±,p

∞

L∞,w

)
p
.

The right-hand side is independent of the choice j ∈ {1, 2}. Therefore,

H1(L∞,q, (E1)p)/Im
(
κ±,pL∞,q

)
∼= H1(L∞,q, (E2)p)/Im

(
κ±,pL∞,q

)
which implies that ±K̃p((E1)p/L∞) ∼= ±K̃p((E2)p/L∞). Similar argument
works for when v = p̄. Now let v ∈ S\{p, p̄}. Since (E1)p ∼= (E2)p, it fol-
lows that for any prime w|v

H1(Ln,w, (E1)p) ∼= H1(Ln,w, (E2)p)

and thus ±K̃v((E1)p/Ln) ∼=± K̃v((E2)p/Ln). This means that for any v ∈ S
the local terms match, and therefore we have the result. □

Proposition 3.4. Let E/L be an elliptic curve satisfying Hyp 1. Then, there
exists an injective map

φ±/± : R±/±(Ep/L∞) ↪−→ Sel±/±(Ep∞/L∞)p

such that the coker(φ±/±) is a cotorsion Ω(G)-module. Therefore, the following
equality holds

corankΩ(G)(R±/±(Ep/L∞)) = corankΩ(G)(Sel
±/±(Ep∞/L∞)p).
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Proof. Let v ∈ S and suppose w|v is a prime in L∞. Set

φ±
w :=


ψw,∞ if w|l ∈ Sbad,

ψ±
q,∞ if w = q|p,

ψ±
q̄,∞ if w = q̄|p̄.

The maps ψ±
q,∞ and ψ±

q̄,∞ are isomorphisms by Proposition 3.1(1) and the Fp-
dimension of ker(ψw,∞) is less than or equal to 2 by Proposition 3.1(2). Define
the map

φ±
v : ±K̃v(Ep/L∞)→

(
J±
v (Ep∞/L∞)

)
p

(23)

φ±
v :=

⊕
w|v

φ±
w .

Therefore, φ±
v is an isomorphism when v ∈ {p, p̄}. Define the map φ±/± using

the following commutative diagram (cf. [17, Corollary 4.5])

(24)

0 R±/±(Ep/L∞) H1(GS∞, Ep)
⊕
v∈S

±K̃v(Ep/L∞)

0 Sel±/±(Ep∞/L∞)p H1(GS∞, Ep∞)p
⊕
v∈S

(
J±
v (Ep∞/L∞)

)
p
.

φ±/±

ξ±/±
p

ψGS
∞,∞ ∼=

⊕
v∈S

φ±
v

ξ±/±

The middle vertical map is an isomorphism by Proposition 3.1(1). This
implies that φ±/± is injective and

coker(φ±/±) ⊆ ker(
⊕
v∈S

φ±
v ) =

⊕
v∈Sbad

ker(φ±
v ).

Suppose v ∈ Sbad and fix a prime w|v in L∞. Then we have

ker(φ±
v ) = IndGGw

ker(ψw,∞) ∼= ker(ψw,∞)⊗̂Ω(Gw)Ω(G),

where Gw = Gal(Lcyc,w, Lv) ∼= Zp is the decomposition group of G at the

prime w and −⊗̂Ω(Gw)− denotes the completed tensor product over Ω(Gw).
Recall that the map ψw,∞ is surjective with finite kernel by Proposition 3.1(2).
Thus ker(ψw,∞) is a cotorsion Ω(Gw)-module. As Ω(G) is a flat Ω(Gw)-module
(cf. [19, Lemma 3.3]), we have

⊕
v∈Sbad ker(φ±

v ) is cotorsion as a Ω(G)-module.
□

4. Signed Selmer and fine residual Selmer groups as Iwasawa
modules

Here, we prove our main theorem. Throughout this section, we assume that
E/L is an elliptic curve satisfying the assumptions of Hyp 1.
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Conjecture 4.1 ([13, Conjecture 4.11]). For any choice of the signs,

X±/±(Ep∞/L∞)

is a torsion Λ(G)-module.

If E is defined over Q, then Lei and Sprung showed in [14] that the above
conjecture holds (cf. proof of [14, Theorem 4.4]).

Hyp 2 ±/± : X±/±(Ep∞/L∞) is a torsion Λ(G)-module.

Note that Conjecture 4.1 implies Hyp 2±/± for all choices of the signs. In
[17], to prove their main results, the authors assume (cf. [17, Hyp 2]):

Hyp 2 ±/±(cyc) : X±/±(Ep∞/Lcyc) is a torsion Λ(Γ)-module.

Here, the Λ(Γ)-module X±/±(Ep∞/Lcyc) denotes the Pontryagin dual of the

Selmer groups Sel±/±(Ep∞/Lcyc). We show later that Hyp 2±/±(cyc) implies

Hyp 2±/± (cf. Proposition 5.1). If Sel(Ep∞/L) = Sel±/±(Ep∞/L) is finite, then

Hyp 2±/±(cyc) is automatically satisfied (cf. Remark 4.5 of [15]).

Proposition 4.2. Hyp 2±/±(cyc) (resp. Hyp 2±/±) holds if and only if

(1) H2(GScyc, Ep∞) (resp. H2(GS∞, Ep∞)) vanishes; and

(2) The map ξ
±/±
cyc in the exact sequence (resp. the map ξ±/± defined in

(12))

0→ Sel±/±(Ep∞/Lcyc)→ H1(GScyc, Ep∞)
ξ±/±
cyc−−−→

⊕
v∈S

J±
v (Ep∞/Lcyc)(25)

is surjective.

Proof. See Proposition 4.4 of [15] (resp. Proposition 4.12 of [13]). □

4.1. Cassels–Poitou–Tate exact sequence for fine signed residual
Selmer group

Here, we aim to produce an analogous statement to Remark 4.2 for signed
fine residual Selmer groups. More specifically, we would like to show that the
Pontryagin dual of the signed fine residual Selmer group, Y±/±(Ep/L∞), is
a torsion Ω(G)-module exactly when the exact sequence (13) is short exact.

In other words, exactly when the map ξ
±/±
p is surjective. Our strategy is the

same as [17, Section 4.2]. We do this by studying the exact sequence (13)
using Cassels–Poitou–Tate exact sequence (cf. [4, Theorem 1.5] for details).
We begin by defining some new modules involved in the sequence. Let n ≥ 0
and w ∈ S(Ln). Define

W±
w (Ep/Ln) :=


0 if w ∈ Sbad(Ln),

Im κ±,pLn,q
if w = q|p,

Im κ±,pLn,q̄
if w = q̄|p̄,

(26)
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where the choice of the sign, as usual, depends on the sign of the Kummer map
κ±,p in the direction of primes p and p̄. For v ∈ S (cf. equation (7))

±K̃v(Ep/Ln) =
⊕
w|v

H1(Ln,w, Ep)/W±
w (Ep/Ln).

Let W±
w (Ep/Ln)

⊥ ⊂ H1(Ln,w, Ep) denote the orthogonal complement of the
group W±

w (Ep/Ln) with respect to the Tate local duality (cf. [4, Section 1.1]).

Define R±/±(Ep/Ln), a Ω(Gn)-module, using the exact sequence

0→ R±/±(Ep/Ln)→ H1(GSn , Ep)→
⊕

w∈S(Ln)

H1(Ln,w, Ep)/W±
w (Ep/Ln)

⊥
.

For any n ≥ 0, the Cassels–Poitou–Tate exact sequence gives

0→ R±/±(Ep/Ln)→ H1(GSn , Ep)→
⊕

w∈S(Ln)

H1(Ln,w, Ep)/W±
w (Ep/Ln)

→ R±/±(Ep/Ln)
∧ → H2(GSn , Ep)→

⊕
w∈S(Ln)

H2(Ln,w, Ep)→ 0.
(27)

The final zero is due to equation (2) (cf. [4, Theorem 1.5]). Define

R±/±(Ep/L∞) := lim←−
cores

R±/±(Ep/Ln) ⊂ H1
Iw(L,Ep),(28)

where the Iwasawa cohomology module H1
Iw(L,Ep) := lim←−cores

H1(GSn , Ep).

Since H0(GSn , Ep) vanishes by equation (2), using Jannsen’s spectral sequence
(cf. [10, Corollary 13]), there is an isomorphism

H1
Iw(L,Ep)

∼= HomΩ(G)

(
HomFp(H

1(GS∞),Fp),Ω(G)
)
.

The left-hand side is a torsion-free Ω(G)-module and therefore so is the right-
hand side. In particular, R±/±(Ep/L∞) is also torsion-free being a Ω(G)-
submodule of H1

Iw(L,Ep). Moreover (cf. [17, Lemma 4.6.])

R±/±(Ep/L∞)∧ = Hom( lim←−
cores

R±/±(Ep/Ln),Qp/Zp) = lim−→
cores∧

R±/±(Ep/Ln)
∧.

Taking the direct limit of the exact sequence (27) yields

0→ R±/±(Ep/L∞)→ H1(GS∞, Ep)
ξ±/±
p−−−→

⊕
v∈S

±K̃v(Ep/L∞)

→ R±/±(Ep/L∞)∧ → H2(GS∞, Ep)→
⊕

w∈S(L∞)

H2(L∞,w, Ep)→ 0.
(29)

Our plan now is to analyze this exact sequence. In [3], the authors introduce
the µ = 0-conjecture for the fine Selmer group (cf. Conjecture A of [2]). Its
original formulation asserts that for an elliptic curve E over any number filed
F , the Pontryagin dual of the classical fine Selmer group over the cyclotomic
extension Fcyc is a finitely generated Zp-module. Here, we use an equivalent
cohomological version of Conjecture A (cf. [17, Proposition 4.7]).
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Conjecture A: Let Γ = Gal(Lcyc/L) and GScyc := Gal(LS/Lcyc). Then the

Ω(Γ)-module H2(GScyc, Ep) is trivial.

4.2. Main theorem

We prove the main theorem (cf. Theorem 4.5) of this article. This is an
analogue of [17, Proof of Theorem 4.12].

Lemma 4.3. Let v ∈ S and w|v be a prime in L∞.

(1) If w ∤ p, then the Pontryagin dual of H1(L∞,w, Ep∞) has µ-invariant
equal to zero. This implies that

corankΛ(G)H
1(L∞,w, Ep∞) = corankΩ(G)H

1(L∞,w, Ep).

(2) Suppose Conjecture A holds. Then, the Pontryagin dual of H1(GS∞,
Ep∞) has µ-invariant equal to zero. This implies that

corankΛ(G)H
1(GS∞, Ep∞) = corankΩ(G)H

1(GS∞, Ep).

Proof. When w ∤ p, then L∞,w is equal to Lcyc,w and the statement that
H1(L∞,w, Ep∞)∧ has µ-invariant equal to zero is proven in [17, Lemma 4.9,
part i]. By Proposition 3.1, there is an isomorphism (H1(GS∞, Ep∞))p ∼=
H1(GS∞, Ep) and equation (14) implies

corankΛ(G)H
1(L∞,w, Ep∞) = corankΩ(G)H

1(L∞,w, Ep).

For part (2), Lemma 5.6 in [15] tells us H1(GS∞, Ep∞)H ∼= H1(GScyc, Ep∞),

where H = Gal(L∞, Lcyc) ∼= Zp. Then µΓ(H
1(GScyc, Ep∞)∧) = 0 by [17,

Lemma 4.9, part ii]. Let M = H1(GS∞, Ep∞)∧. Note that µΓ(MH) vanishes,
where MH denotes the H-coinvariant of Λ(G)-module M . Then, a version of
the topological Nakayama’s lemma (cf. [1, Theorem 2, page 5]) implies that
µG(M) = 0. The equality about the coranks is implied by Proposition 3.1 and
equation (14). □

Thus, given Conjecture A, the last two modules in the exact sequence (29)
vanish. Therefore, to show equality (30), it is enough to show that

corankΩ(G)(H
1(GS∞, Ep)) = corankΩ(G)(

⊕
v∈S

±K̃v(Ep/L∞)).

Proposition 4.4. Let E/L be an elliptic curve satisfying Hyp 1 and Hyp 2±/±.
Moreover, suppose Conjecture A holds. Then

corankΩ(G)(R±/±(Ep/L∞)) = corankΩ(G)(R
±/±(Ep/L∞)∧).(30)

Proof. By Theorems 3.2 and 4.1 of [18], corankΛ(G)(H
1(GS∞, Ep∞)) = [L : Q] =

2. Putting this together with Lemma 4.3(2) we get

corankΛ(G)(H
1(GS∞, Ep∞)) = corankΩ(G)(H

1(GS∞, Ep)) = 2.(31)
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For a prime w ∤ p in L∞ Proposition 2 in [6] implies that Λ(G)-corank of
H1(L∞,w, Ep∞) is zero. This means that for v ∤ p, the Λ(G)-corank of
J±
v (Ep∞/L∞) is zero. Hence, we have

corankΛ(G)(
⊕
v∈S

J±
v (Ep∞/L∞)) = corankΛ(G)(

⊕
v∈Sp

J±
v (Ep∞/L∞)).(32)

Furthermore, by Lemma 4.3(2) we know

corankΛ(G)(H
1(L∞,w, Ep∞)) = corankΩ(G)H

1(L∞,w, Ep)

= corankΩ(G)(
±K̃v(Ep/L∞)) = 0

=⇒ corankΩ(G)(
⊕
v∈S

±K̃v(Ep/L∞)) = corankΩ(G)(
⊕
v∈Sp

±K̃v(Ep/L∞)).

For v|p, recall that the map φ±
v (cf. (23)) gives an isomorphism between

(J±
v (Ep∞/L∞))p and

±K̃v(Ep/L∞). Therefore, Ω(G)-corank of (J±
v (Ep∞/L∞))p

is equal to corankΩ(G)(
±K̃v(Ep/L∞)). Moreover, for v|p the local condition

J±
v (Ep∞/L∞) is a free Λ(G)-module (cf. [13, Corollary 3.9]) and

corankΛ(G)(
⊕
v∈Sp

J±
v (Ep∞/L∞)) = corankΛ(G)(H

1(GS∞, Ep∞) = 2.

This means that J±
v (Ep∞/L∞) has µ-invariant zero. By equation (14),

corankΛ(G)(J
±
v (Ep∞/L∞)) = corankΩ(G)((J

±
v (Ep∞/L∞))p)

= corankΩ(G)(
±K̃v(Ep/L∞)).

This, together with equation (32) gives us that

corankΩ(G)(
⊕
v∈S

±K̃v(Ep/L∞)) = corankΩ(G)(
⊕
v∈Sp

±K̃v(Ep/L∞)) = 2.

Comparing the above equation and equation (31) yields

corankΩ(G)(H
1(GS∞, Ep)) = corankΩ(G)(

⊕
v∈S

±K̃v(Ep/L∞)) = 2.(33)

The exact sequence (29) implies that

corankΩ(G)(R±/±(Ep/L∞)) = corankΩ(G)(R
±/±(Ep/L∞)∧). □

We are now ready to give our main theorem which is the analogue of [17,
Theorem 4.12] in our setting. It describes a criterion for the vanishing of the
signed µ-invariants based completely on the structure of the fine singed residual
Selmer groups as Iwasawa modules.

Theorem 4.5. Let E/L be an elliptic curve satisfying Hyp 1 and Hyp 2±/±.
Furthermore, suppose Conjecture A holds. Then the following statements are
equivalent:

(1) Y±/±(Ep/L∞) = R±/±(Ep/L∞)∧ is Ω(G)-torsion.
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(2) The µ-invariant µ
±/±
G (Ep∞/L∞) := µG(X

±/±(Ep∞/L∞)) vanishes.

(3) The map ξ
±/±
p , described in diagram (29), is surjective.

Proof. To see (1) and (2) are equivalent, recall from Proposition 3.4

rankΩ(G)(Y±/±(Ep/L∞)) = rankΩ(G)(X
±/±(Ep∞/L∞)/pX±/±(Ep∞/L∞));

0 = rankΛ(G)(X
±/±(Ep∞/L∞)) ≤ rankΩ(G)(X

±/±(Ep∞/L∞)/pX±/±(Ep∞/L∞))

with equality exactly when µ
±/±
G (Ep∞/L∞) vanishes. Therefore, given (1) we

have

rankΛ(G)(X
±/±(Ep∞/L∞)) = rankΩ(G)(X

±/±(Ep∞/L∞)/pX±/±(Ep∞/L∞)) = 0

which implies µ
±/±
G (Ep∞/L∞) is zero. On the other hand, if (2) holds, then

0 = rankΛ(G)(X
±/±(Ep∞/L∞)) = rankΩ(G)(Y±/±(Ep/L∞))

and so (1) ⇐⇒ (2). Now let us show (1) =⇒ (3). The discrete Ω(G)-module
H2(GS∞, Ep) vanishes by Proposition 4.7 [17]. By Proposition 4.4

0 = corankΩ(G)(R±/±(Ep/L∞)) = corankΩ(G)(R
±/±(Ep/L∞)∧).

This means that R±/±(Ep/L∞)∧ is a cotorsion Ω(G)-module. However, be-
ing a Ω(G)-submodule of a cotorsion-free module H1

Iw(L,Ep), the module

R±/±(Ep/L∞) is also torsion-free (cf. equation (28)). As a result,

R±/±(Ep/L∞)∧

vanishes. Therefore, the map ξ
±/±
p (cf. the exact sequence (29)) is surjective.

Finally to see (3) =⇒ (1), suppose the map ξ
±/±
p is surjective and hence we

have

(34) 0→ R±/±(Ep/L∞)→ H1(GS∞, Ep)
ξ±/±
p−−−→

⊕
v∈S

±K̃v(Ep/L∞)→ 0.

Taking Pontryagin duals of the above sequence gives

0→
⊕
v∈S

±K̃v(Ep/L∞)
∧ ξ±/±

p

∧

−−−−→ H1(GS∞, Ep)
∧ → Y±/±(Ep/L∞)→ 0.

In the proof of Proposition 4.4, we proved that (cf. equation (33)) the first
two terms in the above short exact sequence have the same Ω(G)-rank which
is equal to 2. So, Y±/±(Ep/L∞) is a torsion Ω(G)-module. □

We record the following important corollary of Theorem 4.5.

Corollary 4.6. Let E1/L and E2/L be two elliptic curves that satisfy Hyp 1
and Hyp 2±/±. Suppose they have isomorphic residual Galois representations
and Conjecture A is satisfied for either E1/L or E2/L (and hence both). Then,

µ
±/±
G ((E1)p∞/L∞) = 0 if and only if µ

±/±
G ((E2)p∞/L∞) = 0.
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Proof. Without loss of generality assume µ
±/±
G ((E1)p∞/L∞) vanishes.

Note that Conjecture A for an elliptic curve E/L only depends on the iso-
morphism class of residual Galois representation Ep. By Theorem 4.5, the

module Y±/±((E1)p/L∞) is Ω(G)-torsion. Proposition 3.3 gives

R±/±((E1)p/L∞) ∼= R±/±((E2)p/L∞).

Thus, the module Y±/±((E2)p/L∞) is also Ω(G)-torsion. Again by Theorem

4.5, this implies that µ
±/±
G ((E2)p∞/L∞) is equal to zero. □

4.3. Comparison with the cyclotomic level

Let H denote the Galois group Gal(L∞/Lcyc) and consider the following
commutative diagram:

(35)

0 R±/±(Ep/Lcyc) H1(GScyc, Ep)
⊕
v∈S

±K̃v(Ep/Lcyc)

0 R±/±(Ep/L∞)H H1(GS∞, Ep)
H

⊕
v∈S

±K̃v(Ep/L∞)
H

α±/±
p

ξ±/±
p,cyc

βp γ̃±/±
p :=

⊕
v∈S

γ̃±v

ξ±/±,H
p

Proposition 4.7. All the vertical maps in the diagram (35) are isomorphisms.
In particular, R±/±(Ep/L∞)H ∼= R±/±(Ep/Lcyc).

Proof. The map βp is an isomorphism by [15, Lemma 5.6]. Let us show that

the map γ̃
±/±
p :=

⊕
v∈S γ̃

±
v is an isomorphism. For any v ∈ S\Sp, the map γ̃±v

is the identity map (cf. proof of Lemma 5.10 in [15]). Let us assume v = p and

let A := J±
p (Ep∞/L∞). Note that, by Corollary 3.2, Ap ∼= ±K̃p(Ep/L∞) and

by Lemma 5.10 of [15], AH ∼= J±
p (Ep∞/Lcyc). Furthermore, by [17, Proposition

4.1-d], there is the following isomorphism

ψ±
q,cyc :

±K̃p(Ep/Lcyc)
∼=−→
(
J±
p (Ep∞/Lcyc)

)
p
.

Using the isomorphism (AH)p ∼= (Ap)
H along with the above map, we see

γ̃±p : ±K̃p(Ep/Lcyc)
∼=

====⇒
ψ±

q,cyc

(
J±
p (Ep∞/Lcyc)

)
p

∼=
=⇒ (AH)p ∼= (Ap)

H

∼=
=⇒ ±K̃p(Ep/L∞)H

is an isomorphism. The case where v = p̄ is similar. Finally, the snake lemma

implies that α
±/±
p is also an isomorphism. □

We record the analogue of Theorem 4.5 in the cyclotomic setting.

Theorem 4.8 ([17, Theorem 4.12]). Let E/L be an elliptic curve satisfying
Hyp 1 and Hyp 2±/±(cyc). Then the following are equivalent:

(1) Y±/±(Ep/Lcyc) = R±/±(Ep/Lcyc)
∧ is Ω(Γ)-torsion.
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(2) The signed cyclic µ-invariant µ±/±
Γ (Ep∞/Lcyc) := µΓ(X

±/±(Ep∞/Lcyc))

vanishes.
(3) The map ξ

±/±
p,cyc in diagram (35) is surjective and Conjecture A holds.

Corollary 4.9. Suppose E/L satisfies Hyp 1 and Hyp 2±/±(cyc). Assume
one of the equivalent statements in Theorem 4.8 is satisfied. Then, the top and
bottom exact sequences in diagram (35) are short exact.

Proof. By Theorem 4.8, the map ξ
±/±
p,cyc is surjective and hence the top row in

diagram (35) is short exact. Since the map γ̃
±/±
p ◦ ξ±/±p,cyc is surjective, the map

ξ
±/±,H
p is also surjective. □

We now combine Theorem 4.8 and Proposition 4.7.

Theorem 4.10. Suppose E/L satisfies Hyp 1 and Hyp 2±/±(cyc). Further-
more, assume one of the equivalent statements in Theorem 4.8 is satisfied.
Then, the equivalent statements in Theorem 4.5 are satisfied.

Proof. Conjecture A is satisfied by part 3 of Theorem 4.8. Proposition 5.1
implies that Hyp 2±/± holds. Using Proposition 4.7

Y±/±(Ep/Lcyc)=R±/±(Ep/Lcyc)
∧ ∼= (R±/±(Ep/L∞)H)∧ ∼= Y±/±(Ep/L∞)H .

Suppose Y±/±(Ep/Lcyc) which is isomorphic to Y±/±(Ep/L∞)H is torsion as
a Ω(Γ)-module. Then, we can apply [8, Lemma 2.6] to get that the module
Y±/±(Ep/L∞) is torsion as a Ω(G)-module. □

Corollary 4.11. With the same assumption as Theorem 4.10,

H1(H,R±/±(Ep/L∞)) = 0.

Proof. By Theorem 4.10, we have the short exact sequence (34). Taking the

long exact H-Galois cohomology of this sequence yields Coker(ξ
±/±,H
p ) is equal

toH1(H,R±/±(Ep/L∞)). By Corollary 4.9, the map ξ
±/±,H
p is surjective which

proves the claim. □

Corollary 4.12. Suppose E/L is an elliptic curve satisfying Hyp 1 and Hyp
2±/±(cyc). Furthermore, assume the Ω(Γ)-module H1(H,R±/±(Ep/L∞)) van-
ishes. Then, the converse of Theorem 4.10 holds too. That is, all the statements
in Theorem 4.8 and Theorem 4.5 are equivalent.

Proof. Suppose the map ξ
±/±
p is surjective and Conjecture A holds. Since

H1(H,R±/±(Ep/L∞)) vanishes, a similar argument as in Corollary 4.11 shows

that the map ξ
±/±,H
p is surjective. Using diagram (35), the map ξ

±/±,H
p ◦ βp

is surjective, and hence that the map ξ
±/±
p,cyc is also surjective. □

Theorem 4.10 implies that if E/L satisfies Hyp 2±/±(cyc), then

µ
±/±
Γ (Ep∞/Lcyc) = 0 =⇒ µ

±/±
G (Ep∞/L∞) = 0.(36)
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Moreover, if H1(H,R±/±(Ep/L∞)) vanishes and Conjecture A holds, then the
two sides of the statement (36) become equivalent by Corollary 4.12.

5. Pseudo-null submodules

Let E/L be an elliptic curve satisfying Hyp 1. We show that under some
mild assumptions, the Λ(G)-modules the Λ(G)-modules X±/±(Ep∞/L∞) and
X(Ep∞/L∞) have no non-trivial pseudo-null submodules (cf. Definition 5.1.4
of [16] for the definition of pseudo-null submodules).

The Iwasawa algebra Λ(G) is a Noetherian regular local commutative ring
and hence a Cohen–Macaulay ring. In particular, the depth of Λ(G) coincides
with its Krull dimension (cf. Chapter 17 of [5]). By the Auslander–Buchsbaum–
Serre theorem, the global dimension of Λ(G) is finite and it coincides with its
Krull dimension. Let H be Gal(L∞, Lcyc) and consider the following diagram
of Λ(Γ)-modules:

(37)

0 Sel±/±(Ep∞/Lcyc) H1(GScyc, Ep∞)
⊕
v∈S

J±
v (Ep∞/Lcyc)

0 Sel±/±(Ep∞/L∞)H H1(GS∞, Ep∞)H
⊕
v∈S

(
J±
v (Ep∞/L∞)

)H
α±/± ∼=

ξ±/±
cyc

β ∼= γ±/± :=
⊕
v∈S

γ±v∼=
ξ±/±,H

The maps β and γ±/± are isomorphisms by Lemmas 5.6, 5.8, and 5.10 of [15].
By snake lemma, the map α±/± is also an isomorphism and hence, all the
vertical maps in the diagram (37) are isomorphisms.

Proposition 5.1. Suppose E/L is an elliptic curve over quadratic number field
L satisfying Hyp 1. If Hyp 2±/±(cyc) holds, then

X±/±(Ep∞/Lcyc) ∼= X±/±(Ep∞/L∞)H ,(38)

where X±/±(Ep∞/L∞)H denotes the of H-coinvariants of X±/±(Ep∞/L∞).

Moreover, Hyp 2±/± holds and the group H1(H,Sel±/±(Ep∞/L∞)) vanishes.

Proof. By Proposition 4.2, the top row of the diagram (37) becomes a short

exact sequence. A diagram chase gives that, since the map γ±/± ◦ ξ±/±cyc is sur-
jective, the map ξ±/±,H is also surjective and hence, the diagram (37) becomes
an isomorphism of two short exact sequences. Taking the Pontryagin dual of
the isomorphism α±/± gives the first claim.

By Hyp 2±/±(cyc), Λ(Γ)-module X±/±(Ep∞/L∞)H is finitely generated and

torsion. This implies that X±/±(Ep∞/L∞) is a finitely generated torsion Λ(G)-

module (cf. [8, Lemma 2.6]) which is Hyp 2±/±. By Proposition 4.2, this implies
that the map ξ±/± in (12) is surjective. Taking long exact H-cohomology
of the short exact sequence (12), we get the bottom short exact sequence in
the diagram (37). In particular, the map ξ±/±,H is surjective which implies

Coker(ξ±/±,H) = H1(H,Sel±/±(Ep∞/L∞)) = 0. □
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Lemma 5.2. Assuming Hyp 2±/±(cyc) holds, the cohomological group H1(Γ,

Sel±/±(Ep∞/Lcyc)) vanishes if and only if ξ
±/±,Γ
cyc is surjective.

Proof. By Proportion 5.1, H1(H,Sel±/±(Ep∞/L∞)) vanishes. The inflation-
restriction exact sequence implies that

H1(Γ,Sel±/±(Ep∞/Lcyc)) = H1(G,Sel±/±(Ep∞/L∞)).

Let GS := Gal(LS/L) and consider the following commutative diagram:

(39)

0 Sel(Ep∞/L) H1(GS , Ep∞)
⊕
v∈S

Jv(Ep∞/L)

0 Sel±/±(Ep∞/Lcyc)
Γ H1(GScyc, Ep∞)Γ

⊕
v∈S

(
J±
v (Ep∞/Lcyc)

)Γ
α±/±

cyc

λ0

βcyc γ±/±
cyc :=

⊕
v∈S

γ±cyc,v

ξ±/±,Γ
cyc

The map λ0 is as in the exact sequence (5). Note that at L0 = L, the classical
p∞-Selmer and the signed Selmer groups coincide. Recall that Hyp 2±/±(cyc)
implies the map ξ±/± is surjective by Proposition 4.2. Taking long exact

Γ-cohomology of the short exact sequence (25) yields that Coker(ξ
±/±,Γ
cyc ) =

H1(Γ,Sel±/±(Ep∞/Lcyc)). □

Lemma 5.3. The map βcyc in diagram (39) is an isomorphism.

Proof. The Hochschild–Serre spectral sequence gives

0→ H1(Γ, Ep∞(Lcyc))→ H1(GS , Ep∞)
βcyc−−→ H1(GScyc, Ep∞)Γ → 0.

The last term is zero as Γ has p-cohomological dimension. Moreover, equation
(2) gives that Ep∞(Lcyc) is zero and so H1(Γ, Ep∞(Lcyc)) vanishes. □

Remark 5.4 ([15, Corollary 5.13]). If Sel(Ep∞/L) is finite, the map ξ
±/±,Γ
cyc is

surjective and hence

H1(Γ,Sel±/±(Ep∞/Lcyc)) = H1(G,Sel±/±(Ep∞/L∞)) = 0.

Let γ and h be topological generators of the groups Γ and H, respectively.
Since G ∼= H × Γ, there is an isomorphism

Λ(G) = Zp[[G]] ∼= Zp[[H × Γ]]
∼=−→ Zp[[T1, T2]],

where h− 1 (resp. γ− 1) is mapped to the indeterminate variable T1 (resp. T2)
and we extend Zp-linearly. In what follows we use Λ(H) (resp. Λ(Γ)) and
Zp[[T1]] (resp. Zp[[T2]]) interchangeably.

Definition 5.5. Suppose R is a ring and let M be an R-module. A sequence
of elements f1, . . . , fk of R is called an M -regular sequence if the following
conditions hold:

(1) The element fi is a non-zero divisor on M/(f1, . . . , fi−1)M for each
i = 1, . . . , k;
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(2) the module M/(f1, . . . , fk)M is not zero.

If I is an ideal of the ring R and f1, . . . , fk ∈ I, then we call f1, . . . , fk an
M -regular sequence in I. Moreover, if M = R, we call f1, . . . , fk a regular
sequence in I.

Using the above definition we can define the depth of a finitely generated
module over an Iwasawa algebra Λ.

Definition 5.6. Let I be an ideal of Λ and suppose M is a finitely generated
Λ-module such that IM ̸=M . Then the I-depth ofM , denoted by depthI(M),
is the maximal length of a M -regular sequence in I. The depth of M as an
Λ-module, denoted by depth(M), is defined to be

depth(M) := depthm(M),

where m is the maximal ideal of Λ.

Theorem 5.7. Suppose E/L is an elliptic curve satisfying Hyp 1 and
Sel(Ep∞/L) is finite. Then the following assertions hold.

(1) X±/±(Ep∞/L∞) has no non-trivial pseudo-null Λ(G)-submodule.
(2) X(Ep∞/L∞) has no non-trivial pseudo-null Λ(G)-submodule.

Proof. For part (1), note that for a finitely generated Λ(G)-module M

depth(M) ≤ Krulldim(M) ≤ Krulldim(Λ(G)) = 3.

Since the module X±/±(Ep∞/L∞) is Λ(G)-torsion then depth(X±/±(Ep∞/L∞))

≤ 2. If the depth of X±/±(Ep∞/L∞) is two, then the Auslander–Buchsbaum
formula (cf. Chapter 19.3 of [5]) will imply that the projective dimension of
X±/±(Ep∞/L∞) is equal to one. By Proposition 3.10 of [21], any module of
projective dimension at most one has no non-trivial non-trivial pseudo-null

submodule. By Proposition 5.1, H1(H,Sel±/±(Ep∞/L∞))
∧
vanishes, and

0 = H1(H,Sel±/±(Ep∞/L∞))
∧ ∼= H1(H,X

±/±(Ep∞/L∞))

= Tor
Λ(H)
1 (Zp,X±/±(Ep∞/L∞)) = X±/±(Ep∞/L∞)[T1],

(40)

where X±/±(Ep∞/L∞)[T1] is the set of elements in X±/±(Ep∞/L∞) that are
annihilated by T1. Therefore, the element T1 is a non-zero divisor on
X±/±(Ep∞/L∞). Proposition 5.1 also tells us that X±/±(Ep∞/L∞)H ∼=
X±/±(Ep∞/Lcyc) as Λ(Γ)-modules. Note that X±/±(Ep∞/L∞)H is non-zero,

otherwise, by Nakayama’s lemma X±/±(Ep∞/L∞) is trivial as T1 ∈ mG. Ar-
guing as above, we see

H1(Γ,Sel±/±(Ep∞/Lcyc))
∧ ∼= H1(Γ,X

±/±(Ep∞/L∞)H)

= (X±/±(Ep∞/L∞)H)[T2].

By Remark 5.4, the group H1(Γ,Sel±/±(Ep∞/Lcyc)) vanishes. Hence, T2 is

a non-zero divisor on X±/±(Ep∞/L∞)H . Note that using Nakayama’s lemma
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we can see that the Λ(G)-module X±/±(Ep∞/L∞)/(T1, T2)X
±/±(Ep∞/L∞) is

non-trivial. Therefor, the set {T1, T2} is an mG-sequence on X±/±(Ep∞/L∞).

Since X±/±(Ep∞/L∞) is Λ(G)-torsion, then depth(X±/±(Ep∞/L∞)) is two.
Similar to the first part, to show part (2), it suffices to show that X(Ep∞/L∞)

has projective dimension at most one. Consider the short exact sequence:

0 −→ Sel±/±(Ep∞/L∞) −→ Sel(Ep∞/L∞) −→
⊕

v∈{p,p̄}

J±
v (Ep∞/L∞) −→ 0.

The last map is exact by Proposition 4.2. Let U :=
⊕

v∈{p,p̄} J
±
v (Ep∞/L∞)∧,

then taking the Pontryagin dual of the above sequence yields

0 −→ U −→ X(Ep∞/L∞) −→ X±/±(Ep∞/L∞) −→ 0.(41)

By Corollary 3.9 of [13], the Λ(G)-module U is free of rank 2 and hence it
has projective dimension zero. By part (1), the depth of X±/±(Ep∞/L∞)
is equal to two, and so by the Auslander–Buchsbaum–Serre formula it has
projective dimension one. Now, applying Lemma 10.109.9 of [20] to the short
exact sequence (41) shows that the projective dimension of X(Ep∞/L∞) is at
most one. □

Let us end this section by relating the signed µ-invariant µ
±/±
G (Ep∞/L∞)

to the µ-invariant of the torsion Λ(G)-submodule of the Pontryagin dual of
the Selmer group. Suppose M is a finitely generated Λ(G)-module and let
TΛ(G)(M) denote the Λ(G)-torsion submodule of M . Note that

TΛ(G)(M) = ker
(
M →M ⊗Λ(G) K

)
,

where K = Frac(Λ(G)) is the fraction field of Λ(G). With abuse of termi-
nology, by the µ-invariant of M , we mean the µ-invariant of the Λ(G)-torsion
submodule of M .

Proposition 5.8. Suppose E/L is an elliptic curve satisfying Hyp 1 and
Hyp 2±/±. Then, the µ-invariant of X(Ep∞/L∞) is bounded by the signed

µ-invariant µ
±/±
G (Ep∞/L∞).

Proof. Noting that K is a flat Λ(G)-module Thus, when we apply the functor
−⊗Λ(G) K to the short exact sequence (41), we obtain the following diagram:

0 U X(Ep∞/L∞) X±/±(Ep∞/L∞) 0

0 U ⊗K X(Ep∞/L∞)⊗K X±/±(Ep∞/L∞)⊗K 0.

The snake lemma implies the following exact sequence of Λ(G)-modules:

0→ TΛ(G)(X(Ep∞/L∞))→ X±/±(Ep∞/L∞)→ U ⊗Λ(G) K/Λ(G)

→ X(Ep∞/L∞)⊗Λ(G) K/Λ(G)→ 0.
(42)
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The exact sequence (42) implies that the Λ(G)-module TΛ(G)(X(Ep∞/L∞))

embeds into X±/±(Ep∞/L∞). This means that

µG
(
TΛ(G)(X(Ep∞/L∞))

)
≤ µ±/±

G (Ep∞/L∞). □

Remark 5.9. A similar argument shows this result for the cyclotomic Zp-
extensions. Also, note that Proposition 5.8 does not assume Conjecture A.

Acknowledgement. The author would like to thank Sujatha Ramdorai for
suggesting this problem and her encouragement. The author also wishes to
thank the anonymous referee for the detailed comments and corrections that
helped improve this article.

References

[1] P. N. Balister and S. Howson, Note on Nakayama’s lemma for compact Λ-modules, Asian

J. Math. 1 (1997), no. 2, 224–229. https://doi.org/10.4310/AJM.1997.v1.n2.a2
[2] J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Tata Institute of Fun-

damental Research Lectures on Mathematics, vol. 88, 2000.

[3] J. Coates and R. Sujatha, Fine Selmer groups of elliptic curves over p-adic Lie exten-
sions, Math. Ann. 331 (2005), no. 4, 809–839. https://doi.org/10.1007/s00208-004-

0609-z

[4] J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Published by Narosa
Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai,

second edition, 2010.

[5] D. Eisenbud, Commutative Algebra, Springer-Verlag, New York, 1995.
[6] R. Greenberg, Iwasawa theory for p-adic representations, In Algebraic number theory,

volume 17 of Adv. Stud. Pure Math., pages 97–137. Academic Press, Boston, MA, 1989.
[7] R. Greenberg and V. Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math.

142 (2000), no. 1, 17–63. https://doi.org/10.1007/s002220000080

[8] Y. Hachimori and T. Ochiai, Notes on non-commutative Iwasawa theory, Asian J. Math.
14 (2010), no. 1, 11–17. https://doi.org/10.4310/AJM.2010.v14.n1.a2

[9] T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970),

213–246. https://doi.org/10.2969/jmsj/02220213
[10] U. Jannsen, A spectral sequence for Iwasawa adjoints, Münster J. Math. 7 (2014), no. 1,

135–148.

[11] B. D. Kim, The Iwasawa invariants of the plus/minus Selmer groups, Asian J. Math.
13 (2009), no. 2, 181–190. https://doi.org/10.4310/AJM.2009.v13.n2.a2

[12] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math.

152 (2003), no. 1, 1–36. https://doi.org/10.1007/s00222-002-0265-4
[13] A. Lei and M. F. Lim, Akashi series and Euler characteristics of signed Selmer groups of

elliptic curves with semistable reduction at primes above p, J. Théor. Nombres Bordeaux
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