• Title/Summary/Keyword: superplasticizer type

Search Result 99, Processing Time 0.027 seconds

Study on the field application according to the early strength of the concrete admixed with polycarboxylate superplasticizer (폴리카본산계 고성능감수제를 이용한 콘크리트의 초기강도에 따른 현장적용성 연구)

  • Lee Jin Woo;Kim Kyung Min;Bae Yeoun Ki;Lee Jae Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.200-203
    • /
    • 2004
  • In this study, it is examined the properties of flow and early strength of concrete according to superplasticizer. For this experiment, it is analyzed that the flow and strength properties according to the mixture factors, compared with naphthalene superplasticizer(normal & delay type) focused on polycarboxylate superplasticizer. (1) The slump loss of concrete used polycarboxylate superplasticizer showed $4\~8cm$, it is judged that slump loss according to the time lapse can be minimized. (2) The performance of polycarboxylate superplasticizer is about $70\%$ level of the normal naphthalene type, it is superior to the delay type, but the performance showed so lowly. The 28days, early strength didn't differ according to the kind of superplasticizer.

  • PDF

Influence of Polycarboxylate type Superplasticizer on the Fluidity and Rate of Heat Liberation of Cement Paste (시멘트페이스트의 유동성 및 수화발열속도에 미치는 폴리카르본산계 고성능AE감수제의 영향)

  • Daiki, Atarashi;Song, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.813-816
    • /
    • 2008
  • Polycarboxylate-type superplasticizer is widely used for producing self-compacting and high-strength concrete and improving concrete durability. This paper discusses the influence of molecular structure of polycarboxylate-type superplasticizer on the fluidity and the rate of heat liberation of ordinary Portland cement paste. The fluidity of cement paste was increased by addition of polycarboxylate-type superplasticizer. The arrival time up to the maximum rate of heat liberation was increased by addition of polycarboxylate-type superplasticizer. The fluidity and the arrival time up to the maximum rate of heat liberation were more influenced by addition of polycarboxylate-type superplasticizer having shorter grafted chain than that having longer grafted chain.

  • PDF

The Execution and Estimation of Construction Cost of High Fluidity Concrete Applying Flowing Concrete Method (유동화공법에 의해 제조한 고유동 콘크리트의 시공 및 원가분석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • High fluidity concrete(HFC) requires high dosage of superplasticizer to acquire sufficient fluidity, and high contents of fine powder and viscosity enhancing admixtures to resist segregation. The use of high amount of admixtures to make HFC at batcher plant in ready mixed concrete company is one of the reasons to raise the manufacturing cost of HFC. For this reason, new type of manufacturing method of HFC are described using both flowing concrete method and segregation reducing superplasticizer(SRS) in order to gain economical profit and offer the convenience for quality control.. As dosage of melamine based superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that addition of viscosity agent into superplasticizer reduce bleeding and improve segregation resistance of concrete. Dosage of AE agent into superplasticizer containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer. Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found. For the estimation of construction cost of high fluidity concreting using segregation reducing type superplasicizer, under same strength levels, although material cost of high fluidity concrete is somewhat higher than that of plain concrete due to segregation reducing type superplasticizer cost, labor cost and equipment cost of high fluidity concrete is cheaper than that of plain concrete. However, based on the strength differences, high fluidity concrete shows lower material cost, labor cost and equipment cost than that of plain concrete due to decreasing in size of member and re-bar caused by high strength development of concrete.

Performance Analysis of Low-viscosity type Superplasticizer (저점도형 감수제의 성능 분석)

  • Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.35-36
    • /
    • 2016
  • Recently, with the increasing demand of high performance of concrete, the mix design of concrete mixture has became low water-to-binder ratio with high binder content. To compensate these trend of mix design, high range water reducer, or superplascizier has been invented to achieve high flowable concrete. Although this superplasticizer provides favorable workability based on its dispersing action on the components of concrete mixture, it has an limitation of decreasing viscosity of the mixture, and thus it is difficult to secure sufficient workability for high performance concrete mixtures with high binder content. To improve the workability of concrete with high viscosity, recently, low-viscosity type superplasticizer was introduced, and in this research, a fundamental properties of low-viscosity type superplasticizer is evaluated.

  • PDF

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.

Determination of Optimal Mixture Proportion of Segregation Reducing Type Superplasticizer for High Fluidity Concrete (고유동 콘크리트용 분리저감형 유동화제의 최적배합비 결정)

  • 한천구;김성수;손성운
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.275-282
    • /
    • 2002
  • High fluidity concrete needs high dosage of superplasticizer to acquire sufficient fluidity and high contents of fine powder and viscosity agents to prevent segregation. But it requires high manufacturing cost and has difficult in quality control. Therefore, in this paper, determination of optimal mixture proportion of segregation type superplasticizer for high fluidity concrete and manufacturing high fluidity concrete by applying developed segregation reducing type superplasticizer are discussed using flowing concrete method. According to test results, as dosage of superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that adding viscosity agent into it reduce bleeding and improve segregation resistance. Dosage of AE agent into it containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found.

Development and Property Analysis of Segregation-Reducing Type Flowing Concrete Using the Viscosity Agent (증점제를 이용한 분리저감형 유동화 콘크리트의 개발 및 그 특성분석)

  • 한천구;강의영;오선교;반호용
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.95-105
    • /
    • 1999
  • When superplasticizer is added to manufacture flowing concrete, the base concrete usually needs the adjustment to assure the sufficient fines contained to obtain flowable consistency without excessive bleeding or segregation. However, this may not only increase the cost, but also cause inconvenience in producing the base concrete. In this paper, the experiments are performed on normal base concrete to achieve a segregation-reducing flowing concrete by adding superplasticizer mixed with viscosity agents and AE admixtures. Three kinds of superplasticizer and two kinds of viscosity agent are selected. According to the results, with regard to the performance and cost of the admixtures, melamine type superplasticizer combined with the PEO viscosity agent and AE admixtures at the ratio 1:0.28:0.001 can acquire good quality and reduce the cost in producing the flowing concrete. With proper addition of combined superplasticizer, even though water to cement ratios of the base concrete are different, the segregation-reducing flowing concrete could be also achieved without reproportioning of the base concrete. However, it would be more desirable if the superplasticizer could be adjusted, before it is put into the practical use in order not to cause some other problems, such as rapid rate of slump loss and retarding of setting time.

Effect of Superplasticizer on the Early Hydration Ordinary Potland Cement (고성능감수제가 시멘트 초기 수화에 미치는 영향)

  • Na, Seung-Hun;Kang, Hyun-Ju;Song, Young-Jin;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.387-393
    • /
    • 2010
  • To improve concrete quality one of the most widely used chemical admixtures is polycarboxylate type superplasticizer. Unlike lignosulfonate and naphthalene-sulfonate, it has high dispersion property and excellent sustainable dispersion property for cement and concrete. Thus, polycarboxylate type superplasticizer has been widely used as a high-performance water reducing admixture together with silica fume in high-performance concrete and other applications for the dispersion of high-strength concrete over 100 MPa. However, even though there have been many studied on the dispersion of concrete by the structure of polycarboxylate type superplasticizer, there have a few studied that clarified the relationships between its rheological properties and microstructure properties in the early hydration behavior of ordinary portland cement. To investigate the correlations between the rheological properties and microstructure of cementitious materials with polycarboxylate type superplasticizer, this study experimented on the rheology, pore structure, heat evolution, and consistency in early hydration as well as on the compressive strength by early dispersion characteristics.

A Fundamental Study for the Practical Use of Liquid Segregation Reducing Type Superplasticizer (액상 분리저감형 유동화제의 실용화를 위한 기초적 연구)

  • 진의영;전충근;오선교;한천구;반호영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.297-300
    • /
    • 1998
  • Usually the flowing concrete manufactured upon normal-mixed base concrete would segregate due to the less of fine particle content. In the previous studies, a new type admixture(liquid segregation reducing type superplasticizer) has been developed to prevent such segregation without modification of base concrete mixture. In this study, the tests are performed in laboratory to evaluate the admixture by analyzing the properties of flowing concrete with different water to cement ratios, so that it could be used in the fields. According to the results, this kind of superplasticizer could improve the fluidity of concrete without causing segregation. However, it seems to be more desirable of the superplasticizer could be adjusted, before it is put into the practical use, not to cause some other problems such as rapid rate of slump and air loss and retarding of setting time.

  • PDF

Influences of Fly ash on the Properties of High Flowing Concrete Using Segregation-Reducing Type Superplasticizer (분리저감형 유동화제를 이용하는 고유동 콘크리트의 특성에 미치는 플라이애쉬의 영향)

  • 윤길봉;전충근;손성운;김성수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.661-664
    • /
    • 2000
  • It is known that high flowing concrete performs much higher fluidity, segregation resistibility and better placeability than normal concrete. However, it is hard to apply high fluidity concrete in field because of high manufacturing cost. Therefore, we intend to investigate the validity of segregation reducing type superplasticizer which is made by combining 0.61 of viscosity agent and 0.022 of AE agent for 1 of superplasticizer. Test are conducted on high flowing concrete using fly ash by applying segregation reducing type superplasticizer. According to experimental results, As contents of fly ash increase, fluidity, segregation resistibility and placeability shows favorable results. And also compressive strength at early age shows to be retarded, while it gains high strength at later age.

  • PDF