• Title/Summary/Keyword: supercritical 2

Search Result 147, Processing Time 0.023 seconds

Numerical Analysis of Flow Characteristics in an Injection Tubing during Supercritical CO2 Injection: Application of Demonstration-scale CO2 Storage Project in the Pohang Basin, Korea (초임계 상태의 CO2 주입시 주입관내 유동 특성의 수치해석적 연구: 포항분지 중소규모 CO2 지중저장 실증 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeongmin;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.9-17
    • /
    • 2022
  • This paper is the continuation of our previous paper, which we refer to as numerical analysis of phase behavior and flow properties in an injection tubing during gas phase CO2 injection. Our study in this paper show the results during supercritcal CO2 injection under the same project. Geological CO2 storage technology is one of the most effective method to decrease climate change due to high injectivity and storage capacity and economics. A demonstration-scale CO2 storage project was performed in a deep aquifer in the Pohang basin, Korea for a technological development in a large-scale CO2 storage project. A problem to consider in the early stage design of the project was to analyze CO2 phase change and flow characteristics during CO2 injection. To solve this problem, injection conditions were decided by calculating injection rate, pressure, temperature, and thermodynamic properties. For this research, we simulated and numerically analyzed CO2 phase change from liquid to supercritical phase and flow characteristics in injection tubing using OLGA program. Our results provide discharge pressure and temperature conditions of CO2 injection combined with a pressure of an aquifer.

Preparation of Pb(Fe1/2Nb1/2)O3 Powders by Supercritical Fluid Method (초임계 유체법을 이용한 Pb(Fe1/2Nb1/2)O3분말 제조)

  • 임대영;김병규;최근목;홍석형;김태훈
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.566-569
    • /
    • 2002
  • In general, Pb-based complex perovskite powders have not been directly prepared because pyrochlore that is secondary phase appears. In this study, we tried to prepare Pb(Fe$_{1}$2/Nb$_{1}$2/)O$_3$ which was used to the electronic multicomponent by supercitical fluid method in order to fabricate very active powder not through pyrochlore.

Numerical analysis of Poiseuille-Rayleigh-Bénard convection in supercritical carbon dioxide

  • Wang, Zhipeng;Xu, Hong;Chen, Chong;Hong, Gang;Song, Zhenguo;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3540-3550
    • /
    • 2022
  • The supercritical carbon dioxide (S-CO2) Brayton cycle is an important energy conversion technology for the fourth generation of nuclear energy. Since the printed circuit heat exchanger (PCHE) used in the S-CO2 Brayton cycle has narrow channels, Rayleigh-Bénard (RB) convection is likely to exist in the tiny channels. However, there are very few studies on RB convection in supercritical fluids. Current research on RB convection mainly focuses on conventional fluids such as water and air that meet the Boussinesq assumption. It is necessary to study non-Boussinesq fluids. PRB convection refers to RB convection that is affected by horizontal incoming flow. In this paper, the computational fluid dynamics simulation method is used to study the PRB convection phenomenon of non-Boussinesq fluid-supercritical carbon dioxide. The result shows that the inlet Reynolds number (Re) of the horizontal incoming flow significantly affects the PRB convection. When the inlet Re remains unchanged, with the increase of Rayleigh number (Ra), the steady-state convective pattern of the fluid layer is shown in order: horizontal flow, local traveling wave, traveling wave convection. If Ra remains unchanged, as the inlet Re increases, three convection patterns of traveling wave convection, local traveling wave, and horizontal flow will appear in sequence. To characterize the relationship between traveling wave convection and horizontal incoming flow, this paper proposes the relationship between critical Reynolds number and relative Rayleigh number (r).

Physicochemical properties of supercritical carbon dioxide defatted mealworm (Tenebrio molitor) powder and protein isolate (초임계이산화탄소 탈지 밀웜(Tenebrio molitor) 분말 및 분리단백의 이화학적 품질 특성)

  • Kim, Yangji;Kim, Seok Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.516-523
    • /
    • 2020
  • Supercritical carbon dioxide (SCO2) extraction was applied for the defatting of mealworm to prepare defatted powder (DP) and protein isolate (PI) and compare the process to press and hexane extraction, with respect to DP and PI physicochemical properties. SCO2 DP was obtained by extracting 34.40% oil at 41.37 MPa, 40℃ for 180 min, and the product contained 71.66% crude protein, which is similar to that of hexane DP and higher than that of press DP. In using alkali protein extraction to prepare PI from DP, SCO2 was as effective as hexane and better than press. SCO2 produced brighter DP and PI than press, but not as much as hexane. Protein solubility was similar in all DP, with minimum values at pH 5. The highest water adsorption capacity was noticeable for SCO2 PI, and SCO2 DP showed an oil adsorption capacity comparable to that of hexane DP. SCO2 DP and PI had better foaming capacity than press DP and PI and showed superior emulsion activity compared to others.

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Experimental study on heat transfer characteristics of supercritical carbon dioxide natural circulation

  • Wang, Pengfei;Ding, Peng;Li, Wenhuai;Xie, Rongshun;Duan, Chengjie;Hong, Gang;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.867-876
    • /
    • 2022
  • An experimental study has been conducted to investigate the heat transfer characteristics of supercritical carbon dioxide (sCO2) uniformly heated in the horizontal circular smooth tube. The results illustrated that there was a significant difference in heat transfer between the top wall and bottom wall due to the buoyancy. Bulk flow acceleration cannot be negligible in the high heat flux region, which leads to heat transfer deterioration. A new heat transfer correlation is proposed, in which the buoyancy parameter and bulk flow acceleration have been taken into account. The new correlation and six classic correlations for sCO2 are examined in horizontal tubes. The comparison indicates that the new correlation has a better performance for sCO2 flowing through a horizontal heating tube under natural circulation conditions. For example, 94.9% of the calculated results using the new heat transfer correlation were within ±30% of the experimental results while only 87.9% of that using the Jackson correlation (the best of the six) were within the same error bands.

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.

Synthesis of Dimethyl Carbonate from Methanol and Supercritical Carbon Dioxide over K2CO3/ZrO2 Catalysts (메탄올과 초임계 이산화탄소로부터 K2CO3/ZrO2 촉매를 이용한 디메틸카보네이트 (Dimethyl Carbonate) 합성)

  • Hong, Seung Tae;Park, Hyung Sang;Lim, Jong Sung;Yoo, Ki-Pung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.550-554
    • /
    • 2008
  • The synthesis of dimethyl carbonate (DMC) from methanol and supercritical carbon dioxide over $K_2CO_3/ZrO_2$ catalysts have been studied. The catalysts were prepared by impregnating $ZrO_2$ with an aqueous $K_2CO_3$ solution. The optimum calcination temperature to disperse K species on the $ZrO_2$ surface was found to be 673 K. Monoclinic $ZrO_2$ was not active, as itself, for the DMC production. However, when the $K_2CO_3$ was impregnated on the $ZrO_2$, the catalytic performance was improved. Besides the catalyst, $CH_3I$ was used as a promoter. The $CH_3I$ promoter as well as the $K_2CO_3/ZrO_2$ catalyst was found to take an important role to improve the production of DMC. The optimum quantities for the catalyst and the promoter were estimated. The effect of the catalyst and the promoter for the DMC synthesis from methanol and supercritical carbon dioxide was investigated and the reaction mechanism was proposed.

Photocatalayst and Decomposition Properties of TiO2 and TiO2-CdS Powders Prepared by Supercritical Fluid Method (초임계 유체법으로 제조한 TiO2 및 TiO2-CdS계 광촉매의 분해물성 연구)

  • 전일수;황수현;박상준;길현식;조승범;전명석;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.481-484
    • /
    • 2004
  • TiO$_2$ and TiO$_2$-CdS powders which were expected to be highly activated photocatalysts were prepared using supercritical fluid method (SCF). The prepared photocatalyst TiO$_2$ powders were crystalline of anatase and ultrafine spherical powders with large specific surface area. When photodecompositoion reaction was done with TiO$_2$ powders prepared by SCF as a photocatalyst in DCA (Dichloroactic Acid) solution, a hazardous organic compound, the photocatlyst, properties of TiO$_2$ powders prepared by SCF were better than that of commercial TiO$_2$ powders.