• Title/Summary/Keyword: supercooled water

Search Result 26, Processing Time 0.021 seconds

Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical Inner Tube (2nd. Report, Characteristics of Heat Transfer) (수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性)(제(第)2보(報) 열전달특성(熱傳達特性)))

  • Ohm, K.C.;Rie, D.H.;Choi, G.G.;Kasiwagi, Takao;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.257-264
    • /
    • 1993
  • This is the second report of a three part study on the absorption and heat transfer characteristics of absorber, the correlation of refrigerating capacity and heating capacity. The 2nd report deals with the heat transfer characteristics of a vertical falling film type absorber of inner copper tube. The solute is LiBr-Water solution(60wt%) and the solvent is water vapor. The film Reynoles numbers are varied in the range of 35~130. The states of LiBr solution at the top of absorber are supercooled liquid and superheated liquid. The results are summarized as follows ; Heat transfer results reveal that for the absorption of falling film, the state of LiBr solution appears to be influential in determining the heat transfer. Thus, for the state of supercooled liquid, heat transfer coefficient decreases with increasing the film Reynolds number, but in the condition of superheated liquid, it increases conversely. The mass transfer coefficients that were presented in the 1st.report and heat transfer coefficients of this paper are presented as the dimensionless correlation. The optimum water flowrate which brings about maximum value of heat flux in the film exists, and that increases with increasing the cooling water temperature.

  • PDF

PREDICTION OF RIME ICE ACCRETION SHAPE ON 2D AIRFOIL (2차원 날개의 서리얼음 형상 예측)

  • Back, S.W.;Yee, K.J.;Oh, S.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Ice accretion may occur when the sold surface passes through the clouds containing supercooled water droplets. In the case of aircraft, it can result in serious performance degradation and safety hazard. In this study, numerical analysis code has been developed to predict the rime ice shapes on a 2-D airfoil and the computation results are validated against experimental data of NASA and other computation results of well-known ice prediction code, LEWICE. In addition, the effects of various numerical parameters on the ice shape have been systematically investigated.

The Effect of Solution Pressure to the Release in a Supercooled Aqueous Solution

  • Kang, Chae-Dong;Kim, Byung-Seon;Hong, Hi-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Supercooled type ice storage system with aqueous solution (or water) may have trouble with non-uniform release of supercooling even though it contributes to the simplicity of system and ecological improvement. The non-uniform release increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to suppress the release of the supercooling, a cooling experiment was tried to an ethylene glycol(EG) 3 mass% solution corresponding with pressurization. Also, the frequency ratio of the release of the supercooling was measured to the pressurization from 101 to 505 kPa. At results, the frequency ratio of supercooling release tends to decrease as the pressure of the aqueous solution increased in each cooling rate. Moreover, it tends to decrease as the cooling rate of the solution decreased in each pressure.

Effect of Inorganic Fillers on the Properties of Hydrated PAN Melt(I) -Rheological Properties of Hydrated PAN Melt- (무기충전재가 PAN의 수화용융특성에 미치는 영향에 관한 연구(I) -PAN 수화응용체의 유변학적 특성-)

  • 민병길;손태원
    • Textile Coloration and Finishing
    • /
    • v.12 no.5
    • /
    • pp.295-300
    • /
    • 2000
  • The melting behavior of hydrated polyacrylonitrile (PAN) and the rheological properties of hydrated PAN melt were investigated using DSC md modified capillary rheometer. With increasing the water content, Tm of the hydrated PAN was rapidly decreased and finally levelled off above a critical water content. However, the melt viscosity was further decreased even above the critical water content. The hydrated PAN melt showed a typical shear thinning behavior. In arrhenius plot, when the hydrated PAN melt was supercooled, it exhibited a different dependency on temperature from that above melting temperature.

  • PDF

Freezing of Micro-size Water Droplet on Micro Porous Surface (박판형 미세다공 표면에서의 미소액적의 동결)

  • Park, Chun-Wan;Lee, Dong-Gyu;Peck, Jong-Hyeon;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Gas diffusion layer(GDL) in PEMFC performs the discharge of water vapor smoothly. When GDL is revealed to cold environment, the freezing of the water droplet or water net in GDL occurs. The purpose of this work is to observe the cooling and freezing behavior of the water droplet which meets to the microporous surface and air under the various low temperature conditions. GDL was coated with waterproof material, which has three types of coating rate, 0, 40 and 60%. Water droplets in series of sizes on GDL were supercooled, frozen and crystalized orderly by circulating low temperature brine. The process of cooling was investigated with the temperature and the snapshot of the water droplet.

Observation, Experiment, and Analysis of the Ice Spikes Formation (솟는 고드름의 형성과정에 관한 관찰, 실험 및 분석)

  • Yoon, Ma-Byong;Kim, Hee-Soo;Son, Jeong-Ho;Yang, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.454-463
    • /
    • 2009
  • In this study, from January 2006 to February 2009, we observed 107 ice spikes formed in a natural state, and analyzed their environment. We developed an experimental device to reproduce ice spikes in laboratory and successfully made 531 ice spikes. We analyzed the process of the formation and the principle of how those ice spikes grow through videotaped data of the formation in the experiment. In the natural world, when the surface of water and the lower part of a vessel begin to freeze, a vent (breathing hole) develops at the surface where an ice is not frozen; this vent serves as the seed of an ice spike. It is assumed that the volume expansion of ice in the vessel which occurs when water freezes makes the supercooled water go upward through the vent and becomes an ice bar called an ice spike. In the laboratory, however, when distilled water is poured into an ice tray cube and kept in the experimental device for about one and a half hours at a temperature of -12- $-13^{\circ}C$, a thin layer of ice then begins to develop on the surface of the water, the vent is formed, and ice spikes form for about 10-30 minutes. These spikes stop growing when the end becomes clogged. Ice spikes can be described as falling into seven categories of shape, with the apex type topping the list followed by the slant type in the natural state and the vertical type predominating in the laboratory.

THE ICE ANALYSIS OF HIGH ASPECT RATIO WING USING FENSAP-ICE (FENSAP-ICE를 이용한 고세장비 날개 결빙해석)

  • Jung, K.J.;Lee, J.H.;Kang, I.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.456-459
    • /
    • 2010
  • Icing is one of the most serious hazards for aircraft. The amount and rate of icing depend on a number of meteorogical and aerodynamic factors. Of primary importance are amount of liquid water content of droplets, their size, the temperature of aircraft surfaces, the collection efficiency, and the extent of supercooled droplets. In this study, in-flight icing analysis of low reynolds number high aspect ratio wing is carried out by using FENSAP-ICE. Each liquid water contents with altitude is obtained from FAR 25 Appendix-C. And the collectoin efficiency is calculated to check out the ice accretion position of wing with two angles of attack. The degradation of aerodynamic characteristics of aircraft are figured out by investigating the accretion of rime and glaze ice.

  • PDF

Solid Lipid Nanoparticles as Drug Delivery System for Water-Insoluble Drugs

  • Li, Rihua;Lim, Soo-Jeong;Choi, Han-Gon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.63-73
    • /
    • 2010
  • Solid lipid nanoparticles (SLNs) have emerged to combine the advantages of polymeric nanoparticles and lipid emulsions in early 1990s. SLNs can present several desirable properties derived from the solid state core. When formulating SLNs, there should be careful considerations about the physical state of the inner solid lipid core and its polymorphism and supercooling behavior. In this review, SLNs were compared to lipid emulsion and emulsion of supercooled melt to understand the unusual behaviors compared to lipid emulsions and to have insights into stability and release mechanism. SLNs have been regarded as biocompatible system because lipids are usually well-tolerable ingredients than polymers. Several studies showed good tolerability of SLNs in terms of cytotoxicity and hemolysis. Similar to various other nanoparticulate drug delivery systems, SLNs can also change biodistribution of the incorporated drugs in a way to enhance therapeutic effect. Most of all, large scale production of SLNs was extablished wihtout using organic solvents. Although there is no SLN product in the market till date, several advantagious properties of SLNs and the progress we have seen so far would make commercial product of SLNs possible before long and encourage research community to apply SLN-based formulations for water-insoluble drugs.

Experimental Study for Ice Formation around Two Horizontal Circular Tubes (수평 2열 원통관 주위의 동결형상에 관한 연구)

  • Yoon, J.I.;Kim, J.D.;Toyofumi, Kato;Oh, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.89-97
    • /
    • 1995
  • Experimental study was performed for free convection and ice formation around two horizontal circular tubes which were placed vertically. Temperature and velocity distributions were visualized with real time holographic interferometry technique and tracer method. When water was cooled, super cooled region was formed around cooling pipe. It was found that flow induced by free convection always directed downwards when the coolant temperature was low, while it directed upwards when the coolant temperature was comparably high though it directed downwards initially. Flow phenomena with free convection were investigated in detail with varying cooling rate and length between cooling pipes. And growing process of dense ice was also investigated. Dendritic ice is suddenly formed within a supercooled region, and a dense ice layer begins to develop from the cooling wall.

  • PDF

The Study on Influence Factors of Snowfall Enhancement Used by Orographic Cloud Seeding in a Mountainous Area

  • Yang, Ha-Young;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.214-218
    • /
    • 2014
  • The main objective of this study is to analyse the influence factors of snowfall enhancement by glaciogenic seeding in a mountainous area. Twenty-five seeding experiments have been conducted during the period of February to April 2010. To use two rates seeding experiments (SR1: $1.04g\;min^{-1}$, SR2: $2.08g\;min^{-1}$) have been tested to get an appropriate ratio for snowfall enhancement at Daegwallyeong area. The conditions of seeding are able as followings: surface temperature <$0^{\circ}C$, wind speed <5 m/s, wind direction between 0 and $130^{\circ}$. The experiment results indicated that in the case of SR1 was more effective than SR2. The number of small ice particles below 1.0 mm was increased during seeding period measured by PARSIVEL disdrometer near generator. Most of snowfall enhancement by seeding was observed the inflow of the easterly wind blew in toward Gangwon regions from the East Sea and the supersaturated supercooled liquid water due to orographic effect.