DOI QR코드

DOI QR Code

Solid Lipid Nanoparticles as Drug Delivery System for Water-Insoluble Drugs

  • Received : 2010.09.09
  • Accepted : 2010.10.07
  • Published : 2010.12.20

Abstract

Solid lipid nanoparticles (SLNs) have emerged to combine the advantages of polymeric nanoparticles and lipid emulsions in early 1990s. SLNs can present several desirable properties derived from the solid state core. When formulating SLNs, there should be careful considerations about the physical state of the inner solid lipid core and its polymorphism and supercooling behavior. In this review, SLNs were compared to lipid emulsion and emulsion of supercooled melt to understand the unusual behaviors compared to lipid emulsions and to have insights into stability and release mechanism. SLNs have been regarded as biocompatible system because lipids are usually well-tolerable ingredients than polymers. Several studies showed good tolerability of SLNs in terms of cytotoxicity and hemolysis. Similar to various other nanoparticulate drug delivery systems, SLNs can also change biodistribution of the incorporated drugs in a way to enhance therapeutic effect. Most of all, large scale production of SLNs was extablished wihtout using organic solvents. Although there is no SLN product in the market till date, several advantagious properties of SLNs and the progress we have seen so far would make commercial product of SLNs possible before long and encourage research community to apply SLN-based formulations for water-insoluble drugs.

Keywords

References

  1. Abdelbary, G., Fahmy, R.H., 2009. Diazepam-loaded solid lipid nanoparticles: Design and characterization. AAPS Pharm-SciTech 10, 211–219.
  2. Bargoni, A., Cavalli, R., Zara, G.P., Fundaro, A., Caputo, O., Gasco, M.R., 2001. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II-tissue distribution, Pharmacol. Res. 43, 497-502. https://doi.org/10.1006/phrs.2001.0813
  3. Battaglia, L., Trotta, M., Gallarate, M., Carlotti, M.E., Zara, G.P., Bargoni, A., 2007. Solid lipid nanoparticles formed by solventin-water emulsion-diffusion technique: Development and influence on insulin stability. J. Microencapsul. 24, 660-672.
  4. Bhaskar, K., Anbu, J., Ravichandiran, V., Venkateswarlu, V., Rao, Y.M., 2009. Lipid nanoparticles for transdermal delivery of flurbiprofen: Formulation, in vitro, ex vivo and in vivo studies. Lipids Health. Dis. 8, 6. https://doi.org/10.1186/1476-511X-8-6
  5. Bhaskar, K., Krishna Mohan, C., Lingam, M., Jagan Mohan, S., Venkateswarlu, V., Madhusudan Rao, Y., Anbu, J., Ravichandran, V., 2009. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: In vitro and in vivo characteristics. Drug Dev. Ind. Pharm. 35, 98-113. https://doi.org/10.1080/03639040802192822
  6. Bi, R., Shao, W., Wang, Q., Zhang, N., 2009. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J. Biomed. Nanotechnol. 5, 84-92. https://doi.org/10.1166/jbn.2009.036
  7. Bondi, M.L., Azzolina, A., Craparo, E.F., Capuano, G., Lampiasi, N., Giammona, G., Cervello, M., 2009. Solid lipid nanoparticles containing nimesulide: Preparation, characterization and cytotoxicity studies. Curr. Nanosci. 5, 39-44. https://doi.org/10.2174/157341309787314575
  8. Bondi, M.L., Montana, G., Craparo, E.F., Picone, P., Capuano, G., Carlo, M.D., Giammona, G., 2009. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimers disease: Preparation, characterization and cytotoxicity studies. Curr. Nanosci. 5, 26-32.
  9. Brioschi, A., Zara, G.P., Calderoni, S., Gasco, M.R., Mauro, A., 2008. Cholesteryl butyrate solid lipid nanoparticles as a butyric acid prodrug. Molecules 13, 230-254. https://doi.org/10.3390/molecules13020230
  10. Brioschi, A., Zenga, F., Zara, G.P., Gasco, M.R., Ducati, A., Mauro, A., 2007. Solid lipid nanoparticles: Could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurol. Res. 29, 324-330. https://doi.org/10.1179/016164107X187017
  11. Bunjes, H., Westesen, K. and Koch, M.H.J., 1996. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129, 159-173. https://doi.org/10.1016/0378-5173(95)04286-5
  12. Casadei, M.A., Cerreto, F., Cesa, S., Giannuzzo, M., Feeney, M., Marianecci, C., Paolicelli, P., 2006. Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. Int. J. Pharm. 325, 140-146. https://doi.org/10.1016/j.ijpharm.2006.06.012
  13. Cavalli, R., Caputo, O., Gasco, M.R., 1993. Solid lipospheres of doxorubicin and idarubicin, Int. J. Pharm. 89, R9-R12. https://doi.org/10.1016/0378-5173(93)90313-5
  14. Cavalli, R., Caputo, O., Gasco, M.R., 2000. Preparation and characterization of solid lipid nanospheres containing paclitaxel, Eur. J. Pharm. Sci. 10, 305-309. https://doi.org/10.1016/S0928-0987(00)00081-6
  15. Cavalli, R., Marengo, E., Rodriguez, L., Gasco, M.R., 1996. Effects of some experimental factors on the production process of solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 42, 110-115.
  16. Chen, H., Khemtong, C., Yang, X., Chang, X., Gao, J., 2010. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. (in press).
  17. Chen, D.B., Yang, T.Z., Lu, W.L., Zhang, Q., 2001. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel, Chem. Pharm. Bull. 49, 1444-1447. https://doi.org/10.1248/cpb.49.1444
  18. Collins-Gold, L.C., Lyons, R.T., Bartholow, L.C., 1990. Parenteral emulsions for drug delivery. Adv. Drug. Deliv. Rev. 5, 189-208. https://doi.org/10.1016/0169-409X(90)90016-L
  19. Cukierman, E., Khan, D.R., 2010. The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem. Pharmacol. 80(5), 762-70. https://doi.org/10.1016/j.bcp.2010.04.020
  20. de Ven, H. V., Vermeersch, M., Shunmugaperumal, T., Vandervoort, J., Maes, L., Ludwig, A., 2009. Solid lipid nanoparticle (SLN) formulations as a potential tool for the reduction of cytotoxicity of saponins. Pharmazie 64, 172-176.
  21. Dianzani, C., Cavalli, R., Zara, G.P., Gallicchio, M., Lombardi, G., Gasco, M.R., Panzanelli, P., Fantozzi, R., 2006. Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells. Br. J. Pharmacol. 148, 648-656. https://doi.org/10.1038/sj.bjp.0706761
  22. Dong, X., Mattingly, C.A., Tseng, M., Cho, M., Adams, V.R., Mumper, R. J., 2008. Development of new lipid-based paclitaxel nanoparticles using sequential simplex optimization. Eur. J. Pharm. Biopharm. 72, 9-17. https://doi.org/10.1016/j.ejpb.2008.11.012
  23. Eldem, T., Speiser, P., and Hincal, A., 1991. Optimization of spraydried and -congealed lipid micropellets and characterization of their surface morphology by scanning electron microscopy. Pharm. Res. 8, 47-54. https://doi.org/10.1023/A:1015874121860
  24. Elder, D.P., Delaney, E., Teasdale, A., Eyley, S., Reif, V.D., Jacq, K., Facchine, K.L., Oestrich, R.S., Sandra, P., David, F., 2010. The utility of sulfonate salts in drug development. J. Pharm. Sci. 99(7): 2948-61. https://doi.org/10.1002/jps.22058
  25. Esposito, E., Fantin, M., Marti, M., Drechsler, M., Paccamiccio, L., Mariani, P., Sivieri, E., Lain, F., Menegatti, E., Morari, M., Cortesi, R., 2008. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res. 25, 1521-1530. https://doi.org/10.1007/s11095-007-9514-y
  26. Faisal, S., Baboota, S., Ali, J., Ahuja, A. , 2008. Development and characterization of carvedilol-loaded solid lipid nanoparticles. J. Pharm. Pharmacol. 60, 150.
  27. Fontana, G., Maniscalco, L., Schillaci, D., Cavallaro, G., Giammona, G., 2005. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity, Drug Deliv. 12, 385-392. https://doi.org/10.1080/10717540590968855
  28. Fundaro, A., Cavalli, R., Bargoni, A., Vighetto, D., Zara, G.P., Gasco, M.R., 2000. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after IV administration to rats. Pharm. Res. 42, 337-343. https://doi.org/10.1006/phrs.2000.0695
  29. Gallarate, M., Trotta, M., Battaglia, L., Chirio, D., 2008. Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation. J. Microencapsul. 1-9.
  30. Han, F., Li, S.M., Yin, R., Shi, X.L., Jai, Q., 2008. Investigation of nanostructured lipid carriers for transdermal delivery of flurbiprofen. Drug Dev. Ind. Pharm. 34, 453-458. https://doi.org/10.1080/03639040701833708
  31. He, C.X., He, Z.G., Gao, J.Q., 2010. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin. Drug Deliv. 7(4), 445-60. https://doi.org/10.1517/17425241003596337
  32. Hsu, M.H., Su, Y.C., 2008. Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Biomed. Microdevices 10, 785-793. https://doi.org/10.1007/s10544-008-9192-5
  33. Huang, Z.R., Hua, S.C., Yang, Y.L., Fang, J.Y., 2008. Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol. Sin. 29(9), 1094-102. https://doi.org/10.1111/j.1745-7254.2008.00829.x
  34. Jain, D., Banerjee, R., 2008. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. Part B Appl. Biomater. 86B, 105-112. https://doi.org/10.1002/jbm.b.30994
  35. Janssens, S., Van den Mooter, G., 2009. Review: physical chemistry of solid dispersions. J. Pharm. Pharmacol. 61(12), 1571-86. https://doi.org/10.1211/jpp.61.12.0001
  36. Joshi, M., Pathak, S., Sharma, S., Patravale, V., 2008. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int. J. Pharm. 364, 119-126. https://doi.org/10.1016/j.ijpharm.2008.07.032
  37. Kumar, V.V., Chandrasekar, D., Ramakrishna, S., Kishan, V., Rao, Y.M., Diwan, P.V., 2007. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int. J. Pharm. 335, 167-175. https://doi.org/10.1016/j.ijpharm.2006.11.004
  38. Kumari, A., Yadav, S.K., Yadav, S.C., 2009. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B. Biointerfaces. 75(1):1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001
  39. Kuo, Y.C., Chen, H.H., 2009. Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int. J. Pharm. 365, 206-213.
  40. Kuo, Y.C., Su, F.L., 2007. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int. J. Pharm. 340, 143-152. https://doi.org/10.1016/j.ijpharm.2007.03.012
  41. Lee, M.K., Lim, S.J., Kim, C.K., 2007. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials. 28(12), 2137-46. https://doi.org/10.1016/j.biomaterials.2007.01.014
  42. Li, H.L., Zhao, X.B., Ma, Y.K., Zhai, G.X., Li, L.B., Lou, H.X., 2009. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release 133, 238-244. https://doi.org/10.1016/j.jconrel.2008.10.002
  43. Li, R., Eun, J.S., Lee, M.-K., 2010. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res. (submitted).
  44. Lian, J., Zhang, S., Wang, J., Fang, K., Zhang, Y., Hao, Y., 2008. Novel galactosylated SLN for hepatocyte-selective targeting of floxuridinyl diacetate. J. Drug Target. 16, 250-256. https://doi.org/10.1080/10611860801902351
  45. Lim, S.J., Lee, M.K., Kim, C.K., 2004. Altered chemical and biological activities of alltrans retinoic acid incorporated in solid lipid nanoparticle powders, J. Control. Release 100, 53-61. https://doi.org/10.1016/j.jconrel.2004.07.032
  46. Liu, H., Gong, T., Fu, H.L., Wang, C.G., Wang, X.L., Chen, Q., Zhang, Q., He, Q., Zhang, Z. R., 2008. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm. 356, 333-344. https://doi.org/10.1016/j.ijpharm.2008.01.008
  47. Liu, J., Zhu, J., Du, Z., Qin, B., 2005. Preparation and pharmacokinetic evaluation of Tashinone IIA solid lipid nanoparticles, Drug Dev. Ind. Pharm. 31, 551-556. https://doi.org/10.1080/03639040500214761
  48. Liu, K., Sun, J., Wang, Y.J., He, Y., Gao, K., He, Z.G., 2008. Preparation and characterization of 10-hydroxycamptothecin loaded nanostructured lipid carriers. Drug Dev. Ind. Pharm. 34, 465-471. https://doi.org/10.1080/03639040701662230
  49. Liu, W., Hu, M., Xue, C., Xu, H., Yang, X., 2008. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int. J. Pharm. 364, 135-141. https://doi.org/10.1016/j.ijpharm.2008.08.013
  50. Lu, B., Xiong, S.B., Yang, H., Yin, X.D., Chao, R.B., 2006. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur. J. Pharm. Sci. 28, 86-95. https://doi.org/10.1016/j.ejps.2006.01.001
  51. Lucks, J.S., Müller, R.H., Konig, B., 1992. Solid lipid nanoaprticles (SLN) – an alternative parenteral drug carrier system. Eur. J. Pharm. Biopharm. 38: 33S.
  52. Magenheim, B., Levy, M.Y. and Benita, S., 1993. A new in vitro technique for evaluation of drug release profile from colloidal carriers- ultrafiltration technique at low pressure. Int. J. Pharm. 94, 115-123. https://doi.org/10.1016/0378-5173(93)90015-8
  53. Mallick, S., Pattnaik, S., Swain, K., De, P.K., 2007. Current perspectives of solubilization: potential for improved bioavailability. Drug Dev. Ind. Pharm. 33(8):865-73. https://doi.org/10.1080/03639040701429333
  54. Manjunath, K., Venkateswarlu, V., 2006. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Drug Target. 14, 632-645. https://doi.org/10.1080/10611860600888850
  55. Martins, S., Silva, A.C., Ferreira, D.C., Souto, E.B., 2009. Improving oral absorption of samon calcitonin by trimyristin lipid nanoparticles. J. Biomed. Nanotechnol. 5, 76-83. https://doi.org/10.1166/jbn.2009.443
  56. Mirtallo, J.M., Dasta, J.F., Kleinschmidt, K.C., Varon, J., 2010. State of the art review: Intravenous fat emulsions: Current applications, safety profile, and clinical implications. Ann. Pharmacother. 44(4):688-700. https://doi.org/10.1345/aph.1M626
  57. Mller, R.H., Runge, S.A., Ravelli, V., Thunemann, A.F., Mehnert, W., Souto, E.B., 2008. Cyclosporine-loaded solid lipid nanoparticles (SLN): Drug-lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 68, 535-544. https://doi.org/10.1016/j.ejpb.2007.07.006
  58. Muller, R.H., Lucks, J.S., 1993. Arzneistofftrager aus festen Lipidteilchen-Feste Lipid Nanospharen (SLN). German Patent Application DE 4131562.
  59. Muller, R.H., Runge, S.A., 1998. Solid lipid nanoparticles (SLN$^{\circledR}$) for controlled drug delivery. In Submicron emulsions in drug targeting and delivery, Harwood academic publishers, edited by S. Benita., pp. 219-233.
  60. Muller, R.H., Ruhl, D., Runge, S. Schulze-Forster, K. and Mehnert, W., 1997. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res. 14, 458-462. https://doi.org/10.1023/A:1012043315093
  61. Ogawa, Y., 1988. In vivo release profiles of leuprolide acetate from microcapsules with polylactic acids or copoly(lactic/glycolic) acids and in vivo degradation of these polymers. Chem. Pharm. Bull. 36: 2576-2581. https://doi.org/10.1248/cpb.36.2576
  62. Paliwal, R., Rai, S., Vaidya, B., Khatri, K., Goyal, A.K., Mishra, N., Mehta, A., and Vyas, S. P., 2008. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 5, 184-191.
  63. Paolicelli, P., Cerreto, F., Cesa, S., Feeney, M., Corrente, F., Marianecci, C., Casadei, M.A., 2008. Influence of the formulation components on the properties of the system SLN-dextran hydrogel for the modified release of drugs. J. Microencapsul. 1-10.
  64. Pellizzaro, C., Coradini, D., Morel, S., Ugazio, E., Gasco, M.R., and Daidone, M.G., 1999. Cholesteryl butyrate in solid lipid nanoparticles as an alternative approach for butyric acid delivery, Anticancer Res. 19, 3921-3926.
  65. Prankerd, R.J. ad Stella, V.J., 1990. The use of oil-in-water emulsions as a vehicle for parenteral drug administration. J. Parent. Sci. Tech. 44, 139-149.
  66. Reddy, L.H., Sharma, R.K., Chuttani,K., Mishra, A.K., Murthy, R.S.R., 2005. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid nanoparticles in Dalton's lymphoma tumor bearing mice, J. Control. Release 105, 185-198. https://doi.org/10.1016/j.jconrel.2005.02.028
  67. Reddy, L.H., Vivek, K., Bakshi, N., Murthy, R.S., 2006. Tamoxifen citrate loaded solid lipid nanoparticles (SLN): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation, Pharm. Dev. Technol. 11, 167-177. https://doi.org/10.1080/10837450600561265
  68. Ruckmani, K., Sivakumar, M., Ganeshkumar, P.A., 2006. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol. 6, 2991–2995.
  69. Sanjula, B., Shah, F.M., Javed, A., and Alka, A., 2009. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target. 17, 249-256. https://doi.org/10.1080/10611860902718672
  70. Sarmento, B., Martins, S., Ferreira, D., and Souto, E.B., 2007. Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine 2, 743-749.
  71. Schwartz, C., Mehnert, J.S. Lucks, J.S., Muller, R.H., 1994. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Rel. 30, 83-96. https://doi.org/10.1016/0168-3659(94)90047-7
  72. Serpe, L., Guido, M., Canaparo, R., Muntoni, E., Cavalli, R., Panzanelli, P., Della Pepal, C., Bargoni, A., Mauro, A., Gasco, M. R., Eandi, M., and Zara, G. P., 2006. Intracellular accumulation and cytotoxicity of doxorubicin with different pharmaceutical formulations in human cancer cell lines. J. Nanosci. Nanotechnol. 6, 3062-3069. https://doi.org/10.1166/jnn.2006.423
  73. Serpe,L., Catalano, M.G., Cavalli, R., Ugazio, E., Bosco, O., Canaparo, R., Muntoni, E., Frairia, R., Gasco, M.R., Eandi, M. and Zara, G.P., 2004. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line, Eur. J. Pharm. Biopharm. 58, 673-680. https://doi.org/10.1016/j.ejpb.2004.03.026
  74. Sharma, P., Ganta, S., Denny, W.A., Garg, S., 2009. Formulation and pharmacokinetics of lipid nanoparticles of a chemically sensitive nitrogen mustard derivative: Chlorambucil. Int. J. Pharm. 367, 187-194. https://doi.org/10.1016/j.ijpharm.2008.09.032
  75. Shegokar, R., Singh, K.K., Müller, R.H., 2010. Production & stability of stavudine solid lipid nanoparticles-From lab to industrial scale. Int J Pharm. (in press).
  76. Siekmann, B., Westesen, K., 1992. Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett. 1, 123-126.
  77. Siekmann, B., Westesen, K., 1994. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles., Colloids Surf. B: Biointerfaces 3, 159-175. https://doi.org/10.1016/0927-7765(94)80063-4
  78. Siekmann, B., Westesen, K., 1998. Submicron lipid suspensions (solid lipid nanoparticles) versus lipid nanoemulsions: similarities and differences. In Submicron emulsions in drug targeting and delivery, harwood academic publishers, edited by S. Benita., pp. 205-218.
  79. Sjostrom, B., Kronberg, B., Carlfors, J., 1993. A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. I: Influence of emulsification and surfactant concentration. J. Pharm. Sci. 82, 579-583. https://doi.org/10.1002/jps.2600820607
  80. Smith, A., Hunneyball, M., 1986. Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int. J. Pharm. 30, 215-220. https://doi.org/10.1016/0378-5173(86)90081-5
  81. Souto E.B., Müller RH., 2010. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb. Exp. Pharmacol. 197, 115-41. https://doi.org/10.1007/978-3-642-00477-3_4
  82. Speiser, P., 1990. Lipidnanopellets als Tragersystem fur Arzneimettel zur peroralen Anwendung., European Patent, EP 0167825.
  83. Stevens, P.J., Sekido, M., Lee, R.J., 2004. A folate-receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug, Pharm. Res. 21, 2153-2157. https://doi.org/10.1007/s11095-004-7667-5
  84. Strickley, R.G., 2004. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21(2), 201-30. https://doi.org/10.1023/B:PHAM.0000016235.32639.23
  85. Sun, J.Y., Zhou, Z.F., Liu, F., Chen, G.S., 2007. Pharmacokinetics and tissue distribution of oxymatrine-SLN, Chin. Pharm. J. 42, 1091-1095.
  86. Tian, J., Pang, X., Yu, K., Liu, L., Zhou, J., 2008. Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with cisplatin. Pharmazie 63, 593-597.
  87. Trivedi, R., and Kompella, U.B., 2010. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond). 5(3), 485-505. https://doi.org/10.2217/nnm.10.10
  88. Ugazio, E., Cavali, R., Gasco, M.R., 2002. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN), Int. J. Pharm. 241, 341-344. https://doi.org/10.1016/S0378-5173(02)00268-5
  89. Van de Manakker, F., Vermonden, T., van Nostrum, C.F., Hennink, W.E., 2009. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules. 10(12): 3157-75. https://doi.org/10.1021/bm901065f
  90. Vivek, K., Reddy, H., Murthy, R.S., 2007. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS Pharm. Sci. Tech. 8, E83.
  91. Wan, F., You, J., Sun, Y., Zhang, X.-G., Cui, F.-D., Du, Y.-Z., Yuan, H., and Hu, F.-Q., 2008. Studies on PEG-modified SLN loading vinorelbine bitartrate (I): preparation and evaluation in vitro, Int. J. Pharm. 359, 104-110. https://doi.org/10.1016/j.ijpharm.2008.03.030
  92. Wang, D., Zhao, P., Cuia, F., Li, X., 2007. Preparation and characterization of solid lipid nanoparticles loaded with total flavones of Hippophae rhamnoides (TFH). PDA J. Pharm. Sci. Technol. 61, 110-120.
  93. Wang, J.J., Liu, K.S., Sung, K.C., Tsai, C.Y., Fang, J.Y., 2009. Skin permeation of buprenorphine and its ester prodrugs from lipid nanoparticles: Lipid emulsion, nanostructured lipid carriers and solid lipid nanoparticles. J. Microencapsul. 13, 1-14. https://doi.org/10.3109/02652049609006799
  94. Wang, J.X., Sun, X., Zhang, Z.R., 2002. Enhanced brain targeting by synthesis of 3-,5-dioctanoyl-5-fluoro-2-deoxyuridine and incorporation into solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 54, 285-290. https://doi.org/10.1016/S0939-6411(02)00083-8
  95. Westesen, K., Bunjes, H., 1995. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix ? Int. J. Pharm. 115, 129-131. https://doi.org/10.1016/0378-5173(94)00347-8
  96. Westesen, K., Siekmann, B., 1997. Investigation of the gel formation of phospholipid-stabilized solid nanoparticles. Int. J. Pharm. 151, 35-45. https://doi.org/10.1016/S0378-5173(97)04890-4
  97. Williams, J., Lansdown, R., Sweitzer, R., Romanoswki, M., Labell, R., Ramaswami, R., Unger, E., 2003. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J. Control. Release 91, 167-172. https://doi.org/10.1016/S0168-3659(03)00241-4
  98. Wong, H.L., Bendayan, R., Rauth, A.M., Xue, H.Y., Babakhanian, K., Wu, X.Y., 2006. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle (PLN) system. J. Pharmacol. Exp. Ther. 317, 1372-1381. https://doi.org/10.1124/jpet.106.101154
  99. Wong, H.L., Bendayan, R., Rauth, A.M., Wu, X.Y., 2004. Development of solid lipid nanoparticles containing ionically-complexed chemotherapeutic drugs and chemosensitizers. J. Pharm. Sci. 93, 1993-2004. https://doi.org/10.1002/jps.20100
  100. Wong, H.L., Rauth, A.M.,Bendayan, R., Manias, J.L., Ramaswamy, M., Liu, Z., Erhan, S.Z., Wu, X.Y., 2006. A new polymer-lipid hydrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug resistant human breast cancer cells. Pharm. Res. 23, 1574-1585. https://doi.org/10.1007/s11095-006-0282-x
  101. Xu, Z., Chen, L., Gu, W., Gao, Y., Lin, L., Zhang, Z., Xi, Y., Li, Y., 2009. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30, 226-232. https://doi.org/10.1016/j.biomaterials.2008.09.014
  102. Yang, L., Geng, Y., Li, H., Zhang, Y., You, J., Chang, Y., 2009. Enhancement the oral bioavailability of praziquantel by incorporation into solid lipid nanoparticles. Pharmazie 64, 86-89.
  103. Yang, S., Zhu, J., Lu, Y., Liang, B., Yang, C., 1999. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm. Res. 16, 751-757. https://doi.org/10.1023/A:1018888927852
  104. Yang, S.C., Zhu, Z.B., 2002. Preparation and characterization of camptothecan solid lipid nanoparticles. Drug Dev. Ind. Pharm. 28, 265-274. https://doi.org/10.1081/DDC-120002842
  105. Yang, S.C., Lu, L.F., Cai, Y., Zhu, Z.B., Liang, B.W., Yang, C.Z., 1999. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release 59, 299-307. https://doi.org/10.1016/S0168-3659(99)00007-3
  106. Ye, J., Wang, Q., Zhou, X., Zhang, N., 2008. Injectable actaritloaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm. 352, 273-279. https://doi.org/10.1016/j.ijpharm.2007.10.014
  107. Ying, X.Y., Du, Y.Z., Chen, W.W., Yuan, H., Hu, F.Q., 2008. Preparation and characterization of modified lipid nanoparticles for doxorubicin controlled release. Pharmazie 63, 878-882.
  108. Yu, B.T., Zhang, Z.R., Zeng, R.J., 2000. Study on the liver targeted 5-fluorouracil solid lipid nanoparticles. Yaoxue Xuebao 35, 704-705.
  109. Yuan, H., Miao, J., Du, Y.Z., You, J., Hu, F.Q., Zeng, S., 2008. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm. 348, 137-145. https://doi.org/10.1016/j.ijpharm.2007.07.012
  110. Zara, G.P., Cavalli, R., Bargoni, A., Fundarò, A., Vighetto, D., Gasco, M.R., 2002. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J. Drug Target. 10(4), 327-35. https://doi.org/10.1080/10611860290031868
  111. Zara, G.P., Cavalli, R., Fundarò, A., Bargoni A., Caputo, O., Gasco, M.R., 1999. Pharmacokinetics of doxorubicin incorporated in solid lipid nanosheres (SLN). Pharmacol. Res. 40, 281-286. https://doi.org/10.1006/phrs.1999.0509
  112. Zara,G.P., Bargoni, A., Cavalli, R., Fundaro, A., Vighetto, D., Gasco, M.R., 2002. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J. Pharm. Sci. 91, 1324-1333. https://doi.org/10.1002/jps.10129
  113. Zhang, D., Ren, T., Lou, H., Xing, J., 2005. The tissue distribution in mice and pharmacokinetics in rabbits of oridonin-solid lipid nanoparticles. Acta Pharm. Sin. 40, 573-576.
  114. Zhang, J. Q., Liu, J., Li, Y. L., Jasti, B. R., 2007. Preparation and characterization of solid lipid nanoparticles containing silibinin. Drug Deliv. 14, 381-387. https://doi.org/10.1080/10717540701203034
  115. Zhang, X., Pan, W., Gan, L., Zhu, C., Gan, Y., Nie, S., 2008. Preparation of a dispersible PEGylate nanostructured lipid carriers (NLC) loaded with 10-hydroxycamptothecin by spray-drying. Chem. Pharm. Bull. (Tokyo) 56, 1645-1650. https://doi.org/10.1248/cpb.56.1645

Cited by

  1. Nanomedical innovation: the SEON-concept for an improved cancer therapy with magnetic nanoparticles vol.10, pp.21, 2015, https://doi.org/10.2217/nnm.15.159