• Title/Summary/Keyword: superconducting wire length

Search Result 32, Processing Time 0.026 seconds

Conceptual Design Considerations of 1MW Class HTS Synchronous Motor (1MW 고온초전도 동기모터의 개념설계 고찰)

  • Baik Seung-Kyu;Sohn Myung-Hwan;Lee Eun-Yong;Kwon Young-Kil;Moon Tae-Sun;Park Heui-Joo;Kim Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.38-43
    • /
    • 2004
  • 1MW class superconducting synchronous motor is designed considering several conditions such as superconducting wire length, machine efficiency and size. As the machine is larger and larger, the superconducting machine shows the advantages more and more over the conventional machines. Although the advantages at 1MW rating are not so great, the design approach to get an appropriate result would be very helpful for larger superconducting synchronous machine design. Major design concerns are focused on reducing expensive Bi-2223 HTS(High Temperature Superconducting) wire which is used for superconducting field coil carrying the rating current around 30K(-243$^{\circ}C$) while the machine efficiency is higher than conventional motors or generators with the same rating. Furthermore, some iron cored structure is considered to reduce the HTS wire requirement without bad effect on machine performances such as sinusoidal armature voltage waveform, synchronous reactance and so on.

Repetitive Over-current Characteristics of YBCO Coated Conductor for Applying to SFCL (초전도한류기에 적용하는 YBCO 박막형 선재의 반복적 과전류 특성)

  • Ahn, Min-Cheol;Seok, Bok-Yeol;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.26-31
    • /
    • 2007
  • In recent years. YBCO coated conductor (CC) called as second generation HTS (high temperature superconducting) wire has been developed as a suitable material for resistive superconducting fault current limiter (SFCL). For designing the SFCL. the required length of superconducting wire is inverse proportional to the maximum temperature reached when a fault occurs. Since the required length strongly affects a manufacturing cost, it is the most important parameter to determine the maximum temperature reached. It is necessary to observe the repetitive over-current characteristics of HTS wire. This paper attempts to measure the variation of critical current of YBCO CC after repetitive over-current pulse. No degradation of the critical current of CC sample was observed by applying 100 times over-current pulse which makes temperature above 400 K after 100ms. This study can be useful in designing optimally resistive SFCL employing YBCO CC. The maximum permissible temperature can be set to 400K. so wire length could be reduced by 30% compared in case of 300K-criterion.

Design Method for HTS Wire Length of the Small Scale Resistive Type Superconducting Fault Current Limiter Considering System Resistance (계통 저항을 고려한 소용량 저항형 한류기의 초전도 선재 소모 길이 산출 연구)

  • Lee, W.S.;Choi, S.J.;Jang, J.Y.;Hwang, Y.J.;Kang, J.S.;Yang, D.G.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.14-18
    • /
    • 2011
  • Electrical system is changing to smart grid which includes the distributed generations with reusable energy sources in these days. The distributed generations are environmentally friendly and have no concern with depletion problem. But dispatching distributed generations can cause an increase of the fault current. Resistive type super conducting fault current limiter is one of the candidates of solution for the large fault problem in smart grid. In this paper, a design method for the wire length of fault current limiter and the result of short circuit test for small scale modules considering system resistance are introduced.

Optimization of wire construction from several 2G HTS tapes

  • Kumarov, D.R.;Sotnikov, D.;Scherbakov, V.I.;Mankevich, A.;Molodyk, A.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.24-28
    • /
    • 2019
  • Despite the second generation HTS tapes (2G HTS tape) have limits in critical current value, scientific and electric devices require more current density day after day. These requirements are realized by using different superconducting wires that consist of 2G HTS tapes designed in various combinations. Authors of this paper have developed the numerical model for estimation of total critical current in the superconducting wire and critical current in each 2G HTS tape placed in this superconducting wire. The current drop in six 2G HTS tapes having different constructions was analyzed. The result of this research is the decrease of critical current up to 25 % for the stack of tapes and up to 5 % for the parallel tapes in the same plane. In addition, what was also made is the estimation of the current distribution by length for six 25 m 2G HTS tapes in different constructions and determination of current deviation by length of the wire.

The Analysis of Temperature on Superconducting Parallel Bifilar Winding (초전도 병렬 무유도권선의 온도 해석)

  • Oh, Yun-Sang;Lee, Sang-Jin;Bae, Joon-Han;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.134-136
    • /
    • 1995
  • A superconducting parallel bifilar winding shows the phenomenon which is known as 'fast quench'. We analyzed the temperature characteristics on the winding by computer simulation, and confirmed theses by experiment. The temperature of the quenched point rose gradually as the source voltage was increased. The temperature changed radically as first, but had a gentle slope after a few milliseconds. As the source voltage was large, the initial quenched length also increased. The points in this quenched length showed almost the same temperature. but the points where initial quench had not occurred showed radical temperature gradient. We could observe that the temperature of the whole wire increased simultaneously as the fast quench occurred on the superconducting parallel bifilar winding, because a number of quenched points in that wire appeared at the same time.

  • PDF

Design and Comparison of Superconducting Magnets with Circular Coil Elements for Magnetic Resonance Imaging (원형무코일로 구성된 MRI용 초전도 자석의 설계와 비교)

  • Kim, Yong-Gwon;Hyun, Jung-Ho;Seo, Jeung-Hoon;Kim, Hyug-Gi;Oh, Chang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.57-62
    • /
    • 2011
  • This paper proposed a method which is the three types of magnet model for improving field inhomogeneity of superconducting magnet. The length of coil wire was compared for the optimized current pattern using minimum power methods and field inhomogeneity under the specific simulation condition in case of same magnet field strength about each magnet type field inhomogeneity. Length of wire and field inhomogeneity were compared under the same condition(18 target points, 20cm DSV). According to the simulation results, the smaller target points can reduce the wire length but it can not improve the field inhomogeneity. Length of wire and low field inhomogeneity can not improve in same time. However, small DSV and reducing target points can overcome the these problem. And to conclude, if it processes shimming as reducing target points in case of magnet model which is open to space, about the size of same imaging region it needs a lot of current values(or the length of wire) and decreases field homogeneity but it is useful to get small ROI.

Design Considerations of 1MW Class HTS Synchronous Motor (1MW급 고온초전도 동기 모터 설계 고찰)

  • Baik S.K.;Sohn M.H.;Lee E.Y.;Kwon Y.K.;Moon T.S.;Kim Y.C.;Cho C.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.809-811
    • /
    • 2004
  • A 1MW class superconductng synchronous motor is designed considering several conditions such as superconducting wire length, machine efficiency and size. As the machine is larger and larger, the superconducting machine shows the advantages more and more over the conventional machines. Although the advantages at 1MW rating are not so great, the design approach to get an appropriate result would be very helpful for larger superconducting synchronous machine design. Major design concerns are focused on reducing expensive Bi-2223 HTS(High Temperature Superconducting) wire which is used for superconducting field coil carrying the rating current around 30K($-243^{\circ}C$) while the machine efficiency is higher than conventional motors or generators with the same rating. Furthermore, some iron cored structure is considered to reduce the HTS wire requirement without bad effect on machine performances such as sinusoidal armature voltage waveform, synchronous reactance and so on.

  • PDF

A Study on the widthwise thickness uniformity of HTS wire using thickness gradient deposition technology

  • Gwantae Kim;Insung Park;Jeongtae Kim;Hosup Kim;Jaehun Lee;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.24-27
    • /
    • 2023
  • Until now, many research activities have been conducted to commercialize high-temperature superconducting (HTS) wires for electric applications. Most of all researchers have focused on enhancing the piece length, critical current density, mechanical strength, and throughput of HTS wires. Recently, HTS magnet for generating high magnetic field shows degraded performance due to the deformation of HTS wire by high electro-magnetic force. The deformation can be derived from widthwise thickness non-uniformity of HTS wire mainly caused by wet processes such as electro-polishing of metal substrate and electro-plating of copper. Gradient sputtering process is designed to improve the thickness uniformity of HTS wire along the width direction. Copper stabilizing layer is deposited on HTS wire covered with specially designed mask. In order to evaluate the thickness uniformity of HTS wire after gradient sputtering process, the thickness distribution across the width is measured by using the optical microscope. The results show that the gradient deposition process is an effective method for improving the thickness uniformity of HTS wire.

Introducing hydrostatic extrusion process for long-length processing of Bi-2223 superconducting tape

  • 정재훈;유재무;고재웅;강신철;김해두
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.193-197
    • /
    • 2002
  • There are many problems in wire fabrication of long length Bi-2223 superconductor by using conventional extrusion method. They are mainly due to high surface resistance and inhomogeneous distribution of inner stress. Hydrostatic extrusion process will not only decrease the extrusion pressure but also enhance homogeneous deformation of material by reducing friction force between billet and container Hydrostatic extrusion method is considered to be useful fur fabrication of the homogeneous wire with high density. In this paper, hydrostatic extrusion process is introduced to fabricate Bi-2223 superconducting tape, and also discussed are the interface homogeneity and microstructural aspects of extruded BSCCO/Ag billet.

  • PDF

The characteristic research of a Bi-2223 wires by the Various Transport Current (수송전류에 따른 Bi-2223 선재의 특성연구)

  • 오정훈;배덕권;강형구;안민철;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.220-223
    • /
    • 2003
  • High-Tc superconducting(HT S) systems are commercialized by many study on high-Tc superconductor. For the successful commercialization of superconducting systems using Bi-2223 wires, the database on the degradation of critical current is essentially needed. In this paper, critical current variation of Bi-2223 wires according to the transport time was investigated. The degradation rate of critical current was also calculated. Solenoid type specimens have the length of 190cm Bi-2223 wire and double-pancake type specimens have the length of l0m wire were tested. Tested Bi-2223 wires are commercialized products of AMSC (American Superconductor) and Innost. When the transportation current was 95% of critical current, the degradation of critical current was appeared after 5 hours of transport time.

  • PDF