• 제목/요약/키워드: superconducting device

검색결과 243건 처리시간 0.031초

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권2호
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

0.7 MJ $\mu$SMES코일 제작을 위한 소형 초전도코일의 특성 (Characteristics of a Small SC Coil for fabrication of the 0.7 MJ $\mu$SMES Coil)

  • 류경우;김해종;성기철;류강식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권1호
    • /
    • pp.13-18
    • /
    • 1999
  • To fabricate a 0.7 FJ, 100 kVA $\mu$SMES device for improving power quality in sensitive electric loads, we developed a design code for a $\mu$SMES device and designed the 0.7 MJ $\mu$SMES device by using it. In this study special emphasis was placed in influence of winding tensions on quench currents of superconducting coils because dry superconducting coils are usually quenched by local disturbances due to strand motions. We first investigated the quench currents of a few kA class superconducting cables for various winding tensions experimentally. To prove the validity of the code and develop all techniques related to fabrication and test of the 0.7 MJ $\mu$SMES device, a smaller size superconducting coil was wound with high winding tension of about 15 kgf/$mm^2$ based on the test results of superconducting cables and tested. It isshown form the test results that designed parameters for the smaller size superconducting coil are in good agreements with measured ones and the quench current of the coil with high winding tension reaches nearly to the critical current of the superconducting cable without any training effects.

  • PDF

Enhancement of heat exchange using On-chip engineered heat sinks

  • Chong, Yonuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.18-21
    • /
    • 2017
  • We report a method for improving heat exchange between cryo-cooled large-power-dissipation devices and liquid cryogen. Micro-machined monolithic heat sinks were fabricated on a high integration density superconducting Josephson device, and studied for their effect on cooling the device. The monolithic heat sink showed a significant enhancement of cooling capability, which markedly improved the device operation under large dc- and microwave power dissipation. The detailed mechanism of the enhancement still needs further modeling and experiments in order to optimize the design of the heat sink.

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • 제7권2호
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

초전도 에너지 저장 기술에 대한 고찰 (A Consideration on the Superconductivity Energy Storage Technology)

  • 고윤석
    • 한국전자통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.691-698
    • /
    • 2015
  • 최근, 전력산업에서는 지구 온난화에 대비하여 에너지 이용 효율 극대화하기 위한 방안으로 초전도 에너지 저장 장치에 큰 관심을 가지고 있다. 초전도 에너지 저장장치는 비 첨두시에 대량의 전기에너지를 손실 없이 자계 또는 운동 에너지의 형태로 저장하였다가 첨두시에 이를 다시 전기에너지로 변환하여 사용함으로서 피크부하의 균등화 및 순간정전 보상을 실현, 전기 에너지 이용 효율의 극대화를 기할 수 있다. 따라서 본 연구에서는 초전도 에너지 저장기술에 대한 개념, 연구개발 현황 및 그 적용 사례 등을 조사, 분석하여, 전력계통 적용 기반기술을 확립하고자 한다.

A brief review on recent developments of superconducting microwave resonators for quantum device application

  • Chong, Yonuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.40-43
    • /
    • 2014
  • Quantum information processing using superconducting qubit based on Josephson junction has become one of the most promising candidates for possible realization of a quantum computer. In the heart of the qubit circuits, the superconducting microwave resonator plays a key role in quantum operations and measurements, which enables single-photon level microwave quantum optics. During last decade, the coherence time, or the lifetime of the quantum state, of the superconducting qubit has been dramatically improved. Among several technological innovations, the improvement of superconducting microwave resonator's quality has been the main driving force in getting the qubit performance almost ready for elementary quantum computing architecture. In this paper, I will briefly review very recent progresses of the superconducting microwave resonators especially aimed for quantum device applications during the last decade. The progresses have been driven by ingenious circuit design, material improvement, and new measurement techniques. Even a rather radical idea of three-dimensional large resonators have been successfully implemented in a qubit circuit. All those efforts contributed to our understanding of the qubit decoherence mechanism and as a result to the improvement of qubit performance.

Ti/Au 이중층을 이용한 초전도 상전이 센서 제작 (Fabrication of Superconducting Transition Edge Sensors based on Ti/Au Bilayer Formation)

  • 이영화;김용함
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.943-949
    • /
    • 2008
  • We report on the development of transition edge sensors for x-ray detection. The sensor technology was based on the fabrication of a superconducting film on a thin membrane. A bilayer of a superconductor, Ti, and a noble metal, Au, was e-beam evaporated on a micromachined SiNx. Another Au layer was evaporated on the two side edges of the bilayer in order not to be affected by structural imperfections at the boundaries. With the method described in the present report, the superconducting transition temperature of the device was consistently achieved to near 80 mK with a sharp transition. The energy spectrum ueasured with the device provided 37 eV FWHM for 5.9 x-rays. We also discuss the design and fabrication considerations as well as the performance of the device in detail.

KSTAR 저온 및 구조 계측 시스템 운전 결과 (Operation result of the Cryogenic and Mechanical Measurement System for KSTAR)

  • 김영옥;추용;요네가와;방은남;이태구;백설희;홍재식;이상일;박갑래;오영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

Voltage disturbance detection method for HTS tape using electromagnetically coupled coils

  • Song, Seunghyun;Lee, Jiho;Lee, Woo Seung;Jin, Hongwoo;Hwang, Young Jin;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권1호
    • /
    • pp.23-26
    • /
    • 2014
  • This paper represents the detection method of voltage disturbance for high temperature superconducting (HTS) tape using electromagnetically coupled coils. In order to detect the voltage as the superconductor transits from the superconducting state to the normal conduction state, voltage taps are widely used to get the voltage signal. And voltage taps are connected to data acquisition device via signal wires. However this new suggested method can detect the superconducting transition voltage without signal wires between voltage taps and data acquisition device by using electromagnetically coupled coils. This system consists of two electromagnetically coupled coils, the first coil to detect and transmit the voltage of HTS tape and the second coil to pick up the transmitted voltage from the first coil. By using this new suggested method, we can build the 'separated voltage-detection system'. HTS tape and first coil are located under liquid nitrogen vessel and the second coil is located under room temperature condition. In this paper, experiments are performed to verify the feasibility of the proposed method. As the result of the experiment, the separated voltage-detection system using electromagnetically coupled coils can successfully observe superconducting-normal transition of HTS tapes.