• 제목/요약/키워드: super-resolution reconstruction

검색결과 60건 처리시간 0.035초

Papoulis-Gerchberg 방법의 개선에 의한 초해상도 영상 화질 향상 (Super-resolution image enhancement by Papoulis-Gerchbergmethod improvement)

  • 장효식;김덕규;정윤수;이태균;원철호
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.118-123
    • /
    • 2010
  • This paper proposes super-resolution reconstruction algorithm for image enhancement. Super-resolution reconstruction algorithms reconstruct a high-resolution image from multi-frame low-resolution images of a scene. Conventional super- resolution reconstruction algorithms are iterative back-projection(IBP), robust super-resolution(RS)method and standard Papoulis-Gerchberg(PG)method. However, traditional methods have some problems such as rotation and ringing. So, this paper proposes modified algorithm to improve the problem. Experimental results show that this proposed algorithm solve the problem. As a result, the proposed method showed an increase in the PSNR for traditional super-resolution reconstruction algorithms.

SUPER RESOLUTION RECONSTRUCTION FROM IMAGE SEQUENCE

  • Park Jae-Min;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.197-200
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Investigation of the super-resolution methods for vision based structural measurement

  • Wu, Lijun;Cai, Zhouwei;Lin, Chenghao;Chen, Zhicong;Cheng, Shuying;Lin, Peijie
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.287-301
    • /
    • 2022
  • The machine-vision based structural displacement measurement methods are widely used due to its flexible deployment and non-contact measurement characteristics. The accuracy of vision measurement is directly related to the image resolution. In the field of computer vision, super-resolution reconstruction is an emerging method to improve image resolution. Particularly, the deep-learning based image super-resolution methods have shown great potential for improving image resolution and thus the machine-vision based measurement. In this article, we firstly review the latest progress of several deep learning based super-resolution models, together with the public benchmark datasets and the performance evaluation index. Secondly, we construct a binocular visual measurement platform to measure the distances of the adjacent corners on a chessboard that is universally used as a target when measuring the structure displacement via machine-vision based approaches. And then, several typical deep learning based super resolution algorithms are employed to improve the visual measurement performance. Experimental results show that super-resolution reconstruction technology can improve the accuracy of distance measurement of adjacent corners. According to the experimental results, one can find that the measurement accuracy improvement of the super resolution algorithms is not consistent with the existing quantitative performance evaluation index. Lastly, the current challenges and future trends of super resolution algorithms for visual measurement applications are pointed out.

위상 상관(Phase Correlation)기반의 부화소 영상 정합방법을 이용한 다중 프레임의 초해상도 영상 복원 (Super Resolution Image Reconstruction Using Phase Correlation Based Subpixel Registration from a Sequence of Frames)

  • 성열민;박현욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.481-484
    • /
    • 2005
  • Inherent opportunities on research for restoring high resolution image from low resolution images are increasing in these days. Super resolution image reconstruction is the process of combining multiple low resolution images to form a higher resolution one. To achieve super resolution reconstruction, proper observation model which is based on subpixel shift information is required. In this context, the importance of the subpixel registration cannot be estimated because subpixel shift information cannot be obtained from original image. This paper presents a regularized adaptive super resolution reconstruction method based on phase correlated subpixel registration, where the Constrained Least Squares(CLS) Restoration is adopted as a post process.

  • PDF

MAP 추정법과 Huber 함수를 이용한 초고해상도 영상복원 (Super-Resolution Reconstruction Algorithm using MAP estimation and Huber function)

  • 장재용;조효문;조상복
    • 대한전자공학회논문지SD
    • /
    • 제46권5호
    • /
    • pp.39-48
    • /
    • 2009
  • 1984년 처음 SR 알고리즘이 제안된 이후, 많은 SR 복원 알고리즘이 제안되었다 SR의 접근방법 중에서도 공간적 접근방법은 저해상도 이미지의 픽셀 값을 고해상도 이미지 격자에 매핑 함으로써 이루어진다. 이때, 저해상도 이미지들 간의 각각 다른 노이즈와 다른 PSF(Point Spread Function) 함수, 왜곡으로 인해 매핑 시 문제가 된다. 때문에 저해상도 이미지들의 노이즈 성분을 최소화하는 방법이 필요하다. 본 논문에서는 노이즈 성분을 최소화하는 방법으로 L1 norm의 방법을 사용하고 이와 동시에 이미지의 경계를 보완해주는 Huber norm을 사용하는 SR의 구조를 제안한다. 실험에서는 타 알고리즘과의 비교를 통해 제안한 알고리즘이 저해상도 이미지 상에 존재하는 노이즈를 줄이고 이미지 경계부분의 보완을 확인하였다.

A Study on Super Resolution Image Reconstruction for Effective Spatial Identification

  • Park Jae-Min;Jung Jae-Seung;Kim Byung-Guk
    • Spatial Information Research
    • /
    • 제13권4호
    • /
    • pp.345-354
    • /
    • 2005
  • 초해상도 영상복원은 동일 지역을 촬영한 여러 장의 저해상도 영상을 이용하여 고해상도의 영상으로 재구성하는 영상처리 알고리즘 기법이다. 이 기법은 위성영상, 비디오 감시, 영상 강조 및 복원, 영상 모자이킹, 의료 영상과 같이 여러 장의 프레임 영상을 획득할 수 있는 분야에서 유용하게 사용될 수 있다. 본 연구에서는 지상을 촬영한 비디오 영상 열에 공간영역 초해상도 기법을 적용하였다. 실험에 사용된 영상은 높은 중복도로 촬영된 연속적인 비디오 영상에서 부표본화되었으며, 저해상도 영상과 고해상도 영상간의 관측 모델을 구성하고 초해상도 영상복원 기법중의 하나인 MAP 알고리즘을 적용하였다. MAP 기법을 이용하여 여러 장의 저해상도 영상에서 고해상도 영상으로 복원하였으며, 그 결과를 기존의 영상보간 방법들과 비교하였다.

  • PDF

초해상도 영상복원을 이용한 집적영상의 해상도 향상 (Resolution enhanced integral imaging using super-resolution image reconstruction algorithm)

  • 홍기훈;박재형;이병호
    • 한국통신학회논문지
    • /
    • 제34권10B호
    • /
    • pp.1124-1132
    • /
    • 2009
  • 본 논문은 집적영상의 요소영상을 초해상도 영상복원에 이용하여 집적영상의 해상도를 향상시키는 방법을 제안한다. 집적영상에서 전체 요소영상의 인접한 단일 요소영상들 사이에는 대상물체의 동일한 부분의 상을 포함하는 공통부분이 존재한다. 이러한 공통부분들을 초해상도 영상복원의 저해상도 영상으로 이용하게 되면 CCD(Charge Coupled Device) 등의 영상취득 장치의 제한된 해상도로 인한 집적영상의 낮은 해상도 문제를 보완 할 수 있게 된다. 전체 요소영상과 제안된 방법을 이용하여 해상도를 향상시킨 전체 요소영상을 비교하여 제안된 방법의 타당성을 증명하였다.

Stage-GAN with Semantic Maps for Large-scale Image Super-resolution

  • Wei, Zhensong;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3942-3961
    • /
    • 2019
  • Recently, the models of deep super-resolution networks can successfully learn the non-linear mapping from the low-resolution inputs to high-resolution outputs. However, for large scaling factors, this approach has difficulties in learning the relation of low-resolution to high-resolution images, which lead to the poor restoration. In this paper, we propose Stage Generative Adversarial Networks (Stage-GAN) with semantic maps for image super-resolution (SR) in large scaling factors. We decompose the task of image super-resolution into a novel semantic map based reconstruction and refinement process. In the initial stage, the semantic maps based on the given low-resolution images can be generated by Stage-0 GAN. In the next stage, the generated semantic maps from Stage-0 and corresponding low-resolution images can be used to yield high-resolution images by Stage-1 GAN. In order to remove the reconstruction artifacts and blurs for high-resolution images, Stage-2 GAN based post-processing module is proposed in the last stage, which can reconstruct high-resolution images with photo-realistic details. Extensive experiments and comparisons with other SR methods demonstrate that our proposed method can restore photo-realistic images with visual improvements. For scale factor ${\times}8$, our method performs favorably against other methods in terms of gradients similarity.

해상도 향상을 위한 고해상도 복원 알고리즘 연구 (A Study on High Resolution Reconstruction Algorithms for improving Resolution)

  • 백영현;문성룡
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.72-79
    • /
    • 2007
  • 저해상도 영상 정보들 이용하여 고해상도 영상으로 재구성하는 새로운 고해상도 복원 알고리즘을 제안한다. 제안된 고해상도 복원 알고리즘은 super 해상도 이론을 바탕으로 구성되며, super 해상도는 정합과 복원의 순차적인 단계로 구성되어있다. 본 논문에서는 다해상도 분해를 통한 웨이브렛 기저와 하위픽셀이동을 통한 정합으로 많은 데이터 처리량과 잡음을 줄여 주요정보 유지와 에러율 개선하였다. 또한 복원단계에서는 퍼지 웨이브렛 B-스플라인 보간법을 이용하여 블러링과 블록화 현상이 없는 부드러운 영상과 해상도를 얻음을 확인하였다.