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Abstract 
 

Recently, the models of deep super-resolution networks can successfully learn the non-linear 
mapping from the low-resolution inputs to high-resolution outputs. However, for large scaling 
factors, this approach has difficulties in learning the relation of low-resolution to 
high-resolution images, which lead to the poor restoration. In this paper, we propose Stage 
Generative Adversarial Networks (Stage-GAN) with semantic maps for image 
super-resolution (SR) in large scaling factors. We decompose the task of image 
super-resolution into a novel semantic map based reconstruction and refinement process. In 
the initial stage, the semantic maps based on the given low-resolution images can be generated 
by Stage-0 GAN. In the next stage, the generated semantic maps from Stage-0 and 
corresponding low-resolution images can be used to yield high-resolution images by Stage-1 
GAN. In order to remove the reconstruction artifacts and blurs for high-resolution images, 
Stage-2 GAN based post-processing module is proposed in the last stage, which can 
reconstruct high-resolution images with photo-realistic details. Extensive experiments and 
comparisons with other SR methods demonstrate that our proposed method can restore 
photo-realistic images with visual improvements. For scale factor ×8, our method performs 
favorably against other methods in terms of gradients similarity. 
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1. Introduction 

The recovery of a high resolution (HR) image from its low resolution (LR) counterpart is 
referred to as super-resolution (SR). SR is the topic of great interest in computer vision 
community and has a wide range of applications such as medical imaging [1, 2], surveillance 
imaging [3], satellite imaging [4] and face recognition [5]. 

Many SR methods have been proposed in the computer vision community. Early methods 
use very fast interpolation such as bicubic interpolation [6] and usually yield results with 
overly smooth textures. Some of the more powerful methods utilize statistical image priors [7, 
8] or internal patch recurrence [9, 10]. Recently, deep learning has seen huge success in 
computer vision fielids such as image classification, image translation, image SR and image 
understanding [11,12,13,14]. For image SR, Dong et al. [15] proposed a Super-Resolution 
Convolutional Neural Network (SRCNN) to learn a mapping from LR to HR in an end-to-end 
manner. Deeper network architectures have also been shown to increase performance for SR, 
e.g. Kim et al. [16] proposed a recursive CNN that allows for long-range pixel dependencies, 
achieving state-of-the-art results. Pan et al. [17] proposed a general dual convolutional neural 
network (DualCNN) by estimating the structure and details for image SR. Residual learning 
has been shown to be an effective approach to achieve better performance. Lim et al. [18] used 
residual blocks to build a very wide network EDSR with residual scaling and a very deep 
MDSR. Zhang et al. [19] proposed a unified framework residual dense network (RDN) with 
residual dense block (RDB) for high-quality image SR. 

While these SR models demonstrate promising results, there are two main issues. First, the 
current methods have difficulty in learning the relation between LR and HR, especially for 
large scaling factors. In large scaling factors, fine details of the HR image may have little or no 
evidence in its LR image, so the reconstructed images may not be satisfactory. Second, most of 
the current methods optimize the network with the mean squared error (MSE) between the 
reconstructed HR image and the ground truth. Since the ability of MSE loss to capture 
high-frequency texture details is very limited, the reconstructed HR images are often 
overly-smooth and have poor perceptual quality [20]. 

In recent years, generative modeling has been remarkable progress with the emergence of 
deep learning. Generative adversarial networks (GANs) [21] have emerged as a popular 
technique for learning generative models in computer vision. GANs consist of two networks: 
generator and discriminator, which are alternatively trained to compete with each other. The 
generator produces an image from a latent code, and the distribution of the image should 
ideally be indistinguishable from the distribution of the real image. GANs can provide a 
powerful framework for generating plausible-looking natural images with high perceptual 
quality. GANs enable a wide variety of application such as image generation [22, 23], image 
editing [24] and representation learning [25, 26]. 

Just as GANs learn a generative model of data, conditional GANs (cGANs) learn a 
conditional generative model [21]. Prior and concurrent works have conditioned GANs on text 
[27], discrete labels [28, 29], and images. Recent methods have achieved impressive results on 
image-to-image translation [12], image inpainting [30], text-to-image [31], style transfer [32] 
and super-resolution (SR) [33]. The key to GANs’ success is the idea of adversarial training 
that forces the generated images to be indistinguishable from natural images. For the SR task, 
Ledig et al. [33] proposed a super-resolution generative adversarial network (SRGAN) for 
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which they employ a deep residual network with skip-connection and achieved photo-realistic 
nature images for ×4 upscaling factor. Bulat et al. [34] proposed a High-to-Low GAN to 
simulate the image degradation process for creating paired low and high-resolution images, 
and presented a Low-to-High GAN to super-resolve the real-world low-resolution images for 
a specific object category, e.g. face images. Althought GAN can generate sharp and realistic 
images with good visual quality, the quality evaluation of the generated images is an open and 
difficult problem. 

In this paper, we propose a novel Stage Generative Adversarial Network (Stage-GAN) 
conditioned on semantic maps for SR, focusing on ×4 and ×8 scaling factors. Our proposed 
Stage-GAN model includes three parts: semantic map generation network (Stage-0 GAN), 
image reconstruction network (Stage-1 GAN) and image refinement network (Stage-2 GAN). 
Our model uses adversarial training and the semantic information of LR image to contribute to 
addressing the non-linear mapping problem  in large scaling factors. In the initial stage, we 
firstly use a pre-defined up-sampling operator (bicubic interpolation) to upscale an input LR 
image to the middle-resolution (MR) image. And then we use the MR image to infer the 
corresponding semantic map by our Stage-0 GAN. The semantic map contains some important 
information of the LR image for reconstructing the realistic image. In the next stage, the MR 
image is concatenated with the semantic map as the input of Stage-1 GAN. By conditioning on 
the semantic map and MR image, Stage-1 GAN learns to capture the semantic information and 
low-frequency  information,  reconstructing  the  HR image with more details. In last stage, we 
stack Stage-2 GAN to refine the Stage-1 results, yielding the photo-realistic HR images. We 
validate the proposed approach and compare our performance against previous works 
including  [15, 33, 35].   Extensive experiments show that our proposed model generates 
high-resolution images with better perceptual quality. 

The remainder of this paper is organized as follows. In Section 2, Stage-GAN is presented 
in detail. The experimental results and comparisons with other methods are demonstrated in 
Section 3. The conclusion of this paper is presented in Section 4. 

2. Proposed Networks 

In this section, we present each component of our model in detail.  As shown in Fig. 1, our 
proposed Stage-GAN consists of three parts: semantic map generation network (Stage-0 
GAN), image reconstruction network (Stage-1 GAN) and image refinement network (Stage-2 
GAN). The Stage-0 GAN generates a semantic map from the input image

0SI . Then the image

0SI is concatenated with the corresponding semantic map semI , which serves as the input for 
Stage-1 GAN. Conditioned on Stage-1 results, the Stage-2 GAN refines the details of the 
results and sharpens the edges of objects, yielding a more realistic high-resolution image. 
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Fig. 1. The architecture of our proposed Stage-GAN. 

2.1 Semantic Map Generation Network (Stage-0 GAN) 
For the task of image SR, to reconstruct HR image while preserving photo-realistic image 
details, we combine the benefits of semantic map and adversarial training to super-resolve the 
ill-posed problem. Different from most methods directly predicting HR image from LR image, 
we firstly generate a corresponding semantic map with our Stage-0 network. Given an input 
LR image LRI , bicubic interpolation algorithm can be employed to obtain the 

middle-resolution (MR) image
0SI . Then the MR image

0SI is fed into the Stage-0 GAN to 

generate the corresponding semantic map semI , 

      
0 0 0
( ) ( ( ))sem G S G bic LRI F I F F I= =                                               (1) 

where
0
( )GF ⋅  denotes the semantic map generation function and ( )bicF ⋅  denotes the bicubic 

interpolation operator. Specifically, we select U-Net [36] as our generator model due to its 
simplicity and effectiveness in semantic segmentation tasks, as shown in Fig. 2. Basically, 
U-Net is a Fully Convolutional Network [37]. It contains a series of down-sampling layers 
followed by a series of up-sampling layers. The feature maps are cropped and copied from 
down-sampling layers to up-sampling layers. It is noted that we remove the cropping and 
copying unit from the basic U-Net model and use only concatenation operations, yielding an 
improved architecture that results in better performance. And we modify the padding scheme 
to make the input and output of the network have the same spatial size. As shown in Fig. 2, the 
network consists of two main parts: the convolutional encoding and decoding units. The basic 
convolution operations are performed followed by Batch normalization [38] and ReLU 
activation in both parts of the network, except that the last one uses tanh activation. In the 
encoding unit, the convolution layers with kernel size 4×4, stride 2 are designed to capture 
useful information. The ReLU in the encoder is leaky. In the decoding phase, the 
de-convolution operation with kernel size 4×4, stride 2 is performed to up-sample the feature 
maps. We use the skip connections to concatenate feature maps from the encoding unit to the 
decoding unit. Some examples of generated semantic maps are shown in Fig. 5. 

For the discriminator 0D , as shown in Fig. 4, the MR image 
0SI is firstly concatenated 

along the channel dimension with the output semantic map semI as the input of ‘fake’ 

discriminator. Meanwhile, the MR image 
0SI is concatenated along the channel dimension 

with the ground truth semantic map GT
semI  as the input of ‘real’ discriminator. The concatenated 
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results are fed through three convolution layers of  down-sampling with kernel size 4×4, stride 
2. The last two layers with kernel size 4×4, stride 1 are used. Here, the output has 30×30 spatial 
dimension. Finally, this discriminator tries to determine if each 30×30 patch in an output 
image is ‘real’ or ‘fake’. We run this discriminator convolutionally across the concatenated 
map, averaging all responses to provide the ultimate output of the discriminator 0D . 

 
Fig. 2. The architecture of improved U-net generator. 

2.2 Image Reconstruction Network (Stage-1 GAN) 
We now present our Stage-1 GAN, which is used to learn a mapping from the MR image and 
corresponding semantic map to the desired HR image. Our Stage-1 GAN is conditioned on 
Stage-0 results and corresponding MR images to generate HR images. In the Stage-1 GAN, 
the Stage-0 result semI  and the corresponding MR image

0SI are delivered to the generator 1G
for image reconstruction, 

          
2 1 1 1 0
= ( ) ([ , ])S G S G S semI F I F I I=                                                  (2) 

where the input 
1SI to Stage-1 GAN is a concatenation of the MR image 

0SI and 

corresponding semantic map semI . 
2SI is the reconstructed image from the input 

0
[ , ]S semI I

by the generator 1G . An 
1
( )GF ⋅  denotes the image reconstruction function. The semantic map 

semI  contains the semantic information of the LR image and the MR image 
0SI remains the 

low-frequency information of the LR image. 
In order to combine the semantic information and low-frequency information, we use the 

U-Net as our reconstruction network, as shown in Fig. 2. Although GAN-based synthesized 
images from semantic maps are visually appealing, their details can be quite different from the 
original images. To obtain high-quality reconstructed images, we use the MR images and 
corresponding semantic maps as the input of Stage-1 GAN. In our proposed Stage-GAN, as 
shown in Fig. 1, to formulate the SR problem by considering both the semantic information 
and low-frequency information, the results 

0
[ , ]S semI I  are fed into the generator 1G  of  

Stage-1 GAN. 
For the discriminator 1D , as shown in Fig. 4, the conditional input 

1SI is firstly 

concatenated along the channel dimension with the reconstruction image 
2SI as the input of 

‘fake’ discriminator. Meanwhile, the conditional input 
1SI is concatenated along the channel 

dimension with the ground truth HR image GT
HRI  as the input of ‘real’ discriminator. The 

concatenated results are fed through a series of convolution layers until it has 30×30 spatial 
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dimension. The discriminator 1D  also try to determine  if  each 30×30 patch is ‘real’ or ‘fake’. 
Details of the structure are discussed in the Stage-0 GAN parts. 

2.3 Image Refinement Network (Stage-2 GAN) 
The results of the Stage-1 GAN may not be satisfactory in visual quality. Some details in the 
reconstructed images are omitted in the Stage-1 GAN, which is vital for generating 
photo-realistic images. In order to improve the quality of reconstructed images, an effective 
post- processing module is designed, as shown in Fig. 3. We stack an image refinement 
network at the output of the Stage-1 GAN as a refiner, named Stage-2 GAN. Our Stage-2 GAN 
is conditioned  on Stage-1  GAN  results  to  generate  high-resolution  images  with  more  
photo- 

 
Fig. 3. Illustration of image refinement network. Convolution parameters are denoted as kernel height × 

kernel width × number of feature maps, stride for each convolutional layers. 

realistic details. In the Stage-2 GAN, the Stage-1 result 
2SI is fed into the generator 2G  for 

image refinement, 

2 2
( )SR G SI F I=                                                               (3) 

where the input 
2SI  to Stage-2 GAN is the result of Stage-1 GAN. And 

2
( )GF ⋅  denotes the 

image refinement function. We design our Stage-2 generator as an encoder-decoder network 
with residual blocks [39]. The Stage-2 GAN completes the details of reconstructed images to 
generate photo-realistic images. In the Stage-2 GAN in Fig. 3, the first layer with kernel size 
7×7, stride 1 is designed to capture more image information. The next two convolution layers 
(encoder) with kernel size 3×3, stride 2 are performed to down-sample the feature maps. Then, 
the encoder image features are fed into nine residual blocks, which are designed to learn the 
differences between the input image 

2SI and the ground truth HR image GT
HRI . To keep the 

output size of decoder same with the input, the de-convolution layers (decoder) with kernel 
size 3×3, stride 2 are performed to up-sample the feature maps. We use the kernel size 7×7, 
stride 1 in the last layer. Such a generator with residual blocks is able to refine the details and 
sharp the edges of the objects, generating photo-realistic HR image. 

For the discriminator 2D , as shown in Fig. 4, the reconstructed image 
2SI is concatenated 

along the channel dimension with the reconstruction image SRI as the input of ‘fake’ 

discriminator. Meanwhile, the reconstructed image 
2SI is concatenated along the channel 

dimension with the ground truth HR image GT
HRI  as the input of ‘real’ discriminator. The 



3948                                                                          Wei et al.: Stage-GAN with Semantic Maps for Large-scale Image Super-resolution 

concatenated results are fed through a series of convolution layers until it has 30×30 spatial 
dimension. The discriminator 2D  also try to determine if each 30×30 patch is ‘real’ or ‘fake’. 
Details of the structure are discussed in the Stage-0 GAN parts. 

 
Fig. 4. The details of our discriminator architecture with corresponding kernel size, number of feature 

maps and stride indicated each convolutional layers. 

2.4 Loss Function 
Our proposed Stage-GAN consists of three parts: semantic map generation network (Stage-0 
GAN), image reconstruction network (Stage-1 GAN) and image refinement network (Stage-2 
GAN). Each part is based on the conditional GANs. The conditional GANs learn an 
adversarial loss that tries to determine if the output image is ‘real’ or ‘fake’, while 
simultaneously train a generative model to minimize this object. 

In Stage-0 GAN, the adversarial loss function can be expressed as, 

0 0 0
0 0

0 0 0 0 0( , ) min max [log ( , )] [log(1 ( ( ), ))]GT
cGAN sem S S SG D

L G D E D I I E D G I I= + −         (4) 

where
0SI is the MR image of LR image and GT

semI  is the ground truth semantic map. 

Conditioned on the MR image 
0SI , Stage-0 GAN trains the discriminator 0D and the 

generator 0G  by alternatively maximizing 0D and minimizing 0G . We provide noise in form 
of dropout rather than gaussian noise. 

In Stage-1 GAN, the adversarial loss function can be expressed as, 

   
1 0 1

1 1
1 1 1 1 1( , ) min max [log ( , )] [log(1 ( ([ , ), ))]GT

cGAN HR S S sem SG D
L G D E D I I E D G I I I= + −    (5) 

where
1SI is a concatenation of the MR image 

0SI and corresponding semantic map semI  and
GT
HRI  is the ground truth HR image. Conditioned on the MR image

0SI and corresponding 

semantic map semI , Stage-1 GAN trains the discriminator 1D and the generator 1G by 
alternatively maximizing 1D and minimizing 1G . Here, we also provide noise in form of 
dropout rather than gaussian noise. 

In Stage-2 GAN, the adversarial loss function can be expressed as, 

2 2 2
2 2

2 2 2 2 2( , ) min max [log ( , )] [log(1 ( ( ), ))]GT
cGAN HR S S SG D

L G D E D I I E D G I I= + −         (6) 

where
2SI is the output of Stage-1 GAN and GT

HRI  is the ground truth HR image. Conditioned on 

the reconstructed image 
2SI , Stage-2 GAN trains the discriminator 2D and the generator 2G



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019                           3949                                                                      

by alternatively maximizing 2D and minimizing 2G . 

For image SR, most methods of supervised SR algorithms optimize the network with the
2L  distance between the reconstructed image and the ground truth image. Since the 2L  loss 

fails to capture perceptually relevant differences, such as high texture detail, the reconstruct-ed 
images are often overly smooth. Especially in large scaling factors, the reconstructed images 
look blurry, which is not close to human visual perception.  In order to address the problem, 
we use 1L  distance rather than 2L  distance. 

In our Stage-GAN, the 1L  loss function of Stage-0 GAN, Stage-1 GAN and Stage-2 GAN 
can be respectively formulated as, 

1 0 1( ) [ ]GT
sem semL G E I I= −                                                     (7) 

21 1 1( ) [ ]GT
HR SL G E I I= −                                                        (8) 

1 2 1( ) [ ]GT
HR SRL G E I I= −                                                       (9) 

where 1( )iL G  represents the 1L  loss function of Stage- i  GAN, =0,1,2i . semI  is the semantic 

map generated by Stage-0 GAN. 
2SI is the reconstructed image by Stage-1 GAN. SRI  is the 

refined image by Stage-2 GAN.  GT
semI  is the ground truth semantic map and GT

HRI  is the ground 
truth HR image. 

Finally, the loss function for our Stage-GAN can be represented as, 

1( , ) ( )loss cGANL L G D L Gλ= + ⋅  

0 0 1 1 2 2( , ) ( , )+ ( , )cGAN cGAN cGANL G D L G D L G D= +                           

     1 0 1 1 1 2+ [ ( ) ( ) ( )]L G L G L Gλ ⋅ + +                                             (10) 
where lossL  represents the full loss of our Stage-GAN and λ  is a parameter that balances the 
adversiral loss and 1L  loss. In this work, we set the parameter =100λ  for our experiment, 
which was used in [12]. The  generator  is tasked  to  not  only  fool  the  discriminator but also 
to generate near the ground  truth output image in an 1L  sense. 
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(a)                                 (b)                                   (c)                                    (d) 
Fig. 5. Example images with semantic maps.  Top: the MR images; middle: the ground truth semantic 
maps; bottom: the semantic maps generated by Stage-0 GAN. (a) and (b) are for ×4 scale factor, (c) and 

(d) are for ×8 scale factor. 

3. Experimental Results and Analysis 
In this section, we evaluate the performance of our model. Here, we first describe 
implementation details of this work and evaluation metrics. Then we analysis important 
components of our proposed Stage-GAN. Finally, the proposed method is compared with 
several SR methods. 

3.1 Implementation Details and Evaluation Metrics 
Our model is trained in a supervised fashion on pairs of  images and semantic maps. Such pairs 
are provided with semantic segmentation  datasets. In this work, we use the CMP Facades 
dataset [40], which consists of just 400 images for training. We use the CMP Facades 
validation set for testing, which consists of 100 images. The facades are from different cities 
around  the world and diverse architectural styles. We sample the original images to 256×256  
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Fig. 6. Visual comparisons on several images with the scaling factor ×4. Top: the ground truth HR 
images; middle: the images generated by Stage-1 GAN without semantic maps; bottom: the images 

generated by Stage-1 GAN with semantic maps. 
 
resolution and scale the range of the images to [0,1] for our experiments. We obtain the LR 
images by down-sampling the original  HR images using bicubic interpolation [6] with scaling 
factors of ×4 and ×8. In the U-Net, all ReLUs in the encoder are leaky, with slope 0.2, while in 
the decoder are not leaky. Our refinement network uses a framework with 9 residual blocks, as 
illustrated in Fig. 3. For the discriminator network, we use 30×30 Patch-GAN, as illustrated in 
Fig. 4. The convolution operations are performed followed by Batch normalization [38] and 
leaky ReLU activation with slope 0.2, except the last one. In our training process, we use 
Adam solver [41] with a mini-batch size of 1 and a momentum parameter of 0.5. The weights 
are initialized from a Gaussian distribution with mean 0 and  standard deviation 0.02.  
Learning  rate is initially set to 0.0002 and then linearly decay to zero every 100 epochs. All 
reported  PSNR(dB) [42] and SSIM [43] measures are calculated on Y-channel of images. 
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Fig. 7. Visual comparisons on several images with the scaling factor ×8. Top: the ground truth HR 
images; middle: the images generated by Stage-2 GAN conditioned on the reconstructed images 

without semantic map; bottom: the images generated by Stage-2 GAN conditioned on the reconstructed 
images with semantic map. 
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22.85/0.6222              21.25/0.5505               24.90/0.5953             22.28/0.5490 

 
 

(f) 
Stage-2 
images 
 
 

23.12/0.6368               21.92/0.5981              24.92/0.6125             22.23/0.5668 
Fig. 8. Visual comparisons on several images generated by our Stage-GAN with the scaling factor ×4. 

Each row lists the HR images, the ground truth semantic maps, the MR images, semantic maps 
generated by Stage-0 GAN, images reconstructed by Stage-1 GAN and images refined by Stage-2 GAN. 
The images generated by Stage-2 GAN have much cleaner and sharper details than the output images of 

Stage-1 GAN. Corresponding PSNR(dB) [42] and SSIM [43] are shown in bottom. 
 
 
 
 

(a) 
HR 

images 
 
 
 
 

(b) 
Sem-maps 

G.T. 
 
 
 
 

(c) 
MR 

images 
 
 
 
 

(d) 
Stage-0 
images 
 
 
 
 

(e) 
Stage-1 
images 

18.70/0.2950              18.53/0.1884              18.39/0.2898               19.26/0.2715 
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(f) 
Stage-2 
images 
 
 

18.55/0.3574              18.12/0.2448               18.26/0.3222              19.26/0.3406 
Fig. 9. Visual comparisons on several images generated by our Stage-GAN with the scaling factor ×8. 

Each row lists the HR images, the ground truth semantic maps, the MR images, semantic maps 
generated by Stage-0 GAN, images reconstructed by Stage-1 GAN and images refined by Stage-2 GAN. 
The images generated by Stage-2 GAN have much sharper details than the images generated by Stage-1 

GAN. Corresponding PSNR(dB) [42] and SSIM [43] are shown in bottom. 
 
 

For generative models (e.g., GAN), the quality evaluation of the generated images is an 
open and difficult problem. The traditional metrics used to evaluate the SR images are PSNR 
[42] and SSIM [43], both of which have been found to correlate poorly with human assessment 
of visual quality. We therefore emphasize that the goal of our experiments is not to achieve 
state-of-the-art PSNR or SSIM results, but instead to generate  HR images with high 
perceptual 
quality. For an image, the gradients can convey important visual information, which are 
crucial to scene understanding. So, we use a new image quality assessment scheme, with 
emphasis on gradient similarity (GSM) [44], for measuring the change in contrast and 
structure in images. 
 

3.2 Component Analysis 
In this work, our proposed Stage-GAN includes three parts: semantic map generation network 
(Stage-0 GAN), image reconstruction network (Stage-1 GAN) and image refinement network 
(Stage-2 GAN). As illustrated in Fig. 1, in Stage-1 GAN, the generators 0G  can generate 
semantic maps from the input MR images, which  preserve  the  semantic  information of  LR 
images.  In the training phase, we first generate the semantic maps and the examples are in Fig. 
5. 

For the large scaling factors, fine details of the HR images may have little or no evidence in 
its LR images. It is difficult to learn the non-linear mapping from LR to HR images. In Stage-1 
GAN, considering that semantic information can contribute to producing correspond- 
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Ground Truth               Bicubic                    SRCNN                    LapSRN                    Ours 
PSNR/SSIM              22.59/0.5371           23.13/0.5780            23.87/0.6262          21.18/0.4856 

 
 
 
 
 
 
 
 
 

Ground Truth               Bicubic                    SRCNN                    LapSRN                    Ours 
PSNR/SSIM              24.04/0.6059           24.68/0.6539            24.99/0.6848          21.81/0.5220 

Fig. 10. Visual comparisons of our model with other methods for ×4 scale factor. From left to right: the 
original HR image, bicubic interpolation, SRCNN [15], LapSRN [35], our proposed Stage-GAN. 
Corresponding PSNR(dB) [42] and SSIM [43]  are shown in bottom. Our method provides much 

cleaner and sharper results, whereas other methods produce blurry boundary. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Ground Truth                              SRGAN                                   Ours 
                          PSNR/SSIM                           20.58/0.4794                         21.18/0.4856 
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Ground Truth                              SRGAN                                   Ours 
                          PSNR/SSIM                           21.04/0.5016                         21.62/0.5376 
Fig. 11. Visual comparisons of our model with SRGAN [33] for ×4 scale factor. Our results have fine 

details, such as the cornice of the building, whereas the SRGAN can not give good details in visual 
quality. 

 

ing instances, such as facade, window, cornice, sill and so on, we use the low-frequency 
information of LR image and corresponding semantic information to reconstruct HR image. 
As shown in Fig. 6, by utilizing the semantic information for jointly reconstruction, the 
Stage-1 GAN with semantic maps can recover more details accurately compared to the 
Stage-1 GAN without semantic maps. As shown in Fig. 7, the reconstructed images with 
semantic maps are fed to Stage-2 GAN, yielding much cleaner images than the reconstructed 
images without semantic maps. 

Fig. 8 illustrates some examples of Stage-0, Stage-1 and Stage-2 images generated by our 
Stage-GAN with scale factor ×4. As shown in Fig. 8(e), Stage-1 GAN fails to produce HR 
images with sharp edges. In order to improve the quality of the images, we propose the Stage-2 
GAN as a post-processing  module to refine the results of Stage-1 GAN, as shown in Fig. 3. In 
the last row Fig. 8(f), Stage-2 GAN can generate HR images with photo-realistic details. For 
scale factor ×8, as shown in Fig. 9, the  images generated by Stage-2 GAN have much cleaner 
and sharper details than the results of Stage-1 GAN, which validates the importance of Stage-2 
GAN for image SR. 

3.3 Comparisons with Other Methods 
To validate our method, we provide quantitative and qualitative comparisons with several SR 
methods in scaling factors ×4 and ×8, which include bicubic [6], SRCNN [15], LapSRN [35] 
and SRGAN [33]. In this work, we do not achieve better performance on PSNR and SSIM, but 
instead generate photo-realistic HR images with high perceptual quality. In particular, for ×8 
SR, our method achieves higher GSM [44] values, which has been correlated well with human 
perception. 

In Fig. 10, we show visual comparisons of our Stage-GAN with other methods for ×4 
super-resolution. Compared to the other methods, our model trained for feature reconstruction 
does a very good job at reconstructing sharpen edges and fine details, such as the windows in 
the above images. We observe that the other methods reconstruct results with noticeable 
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blurring. In contrast, our approach effectively suppresses such blurring through the models of 
Stage-GAN and the robust loss function. Our model can generate the sharper edges of 
buildings and achieve a good performance in the visual results, but compare to the original HR 
image, the reconstructed image may have little difference in structure or the shift of 
corresponding pixel-to-pixel, which harms its PSNR and SSIM compared to baseline methods. 
 
 
 
 
 
 
 
 
 

Ground Truth               Bicubic                    SRCNN                    LapSRN                    Ours 
PSNR/SSIM              20.85/0.3325           21.11/0.3621            21.72/0.4031          19.26/0.3406 

GSM                        0.9379                     0.9447                      0.9452                     0.9507 
 
 
 
 
 
 
 
 
 

Ground Truth               Bicubic                    SRCNN                    LapSRN                    Ours 
PSNR/SSIM              21.39/0.3479           21.47/0.3739            21.80/0.3984          19.68/0.3626 

GSM                        0.9390                     0.9450                       0.9460                    0.9523 
Fig. 12. Visual comparisons of our model with other methods for ×8 scale factor. From left to right: the 

original HR image, bicubic interpolation, SRCNN [15], LapSRN [35], our proposed Stage-GAN. 
Corresponding PSNR(dB) [42], SSIM [43] and GSM [44] are shown in bottom. Our method provides 

much cleaner and sharper results, whereas other methods produce blurry boundary. 
 

In Fig. 11, we compare our model to SRGAN [33] on several images with the scaling 
factor ×4. Our method achieves better performance on PSNR and SSIM than SRGAN [33]. 
Due to the combination of low-frequency information and semantic information, our results 
have fine details, such as the cornice and facade of buildings, whereas SRGAN can not give 
good details in visual quality. 

For ×8 SR, it is challenging to predict HR images from LR images. We show visual 
comparisons on Facades dataset with ×8 scale factor in Fig. 12. It can be observed from the 
visual results that our Stage-GAN can produce much more visually pleasant HR images than 
the comparing SR methods. Specifically, one can see that the performance of SRCNN [15] and 
LapSRN [35] is severely affected by the LR images, due to limited features available in the LR 
spaces. From the top images in Fig. 12, we can see that SRCNN [15] and LapSRN [35] both 
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tend to produce over-smoothed results, whereas our Stage-GAN can recover sharp images 
with better intensity and gradient statistics of clean images. Our method achieves better 
performance on GSM [44], which emphasis on gradient similarity and measures the change in 
structure in images. We see that our approach does a good performance at edges and fine 
details compared to other methods, such as the windows, sill and cornice of buildings. The 
baseline methods do not super-resolve the fine structures well. In contrast, our method 
reconstructs high-quality HR images with photo-realistic details. 

4. Conclusion 
In this paper, we propose Stage Generative Adversarial Networks (Stage-GAN) with semantic 
maps for image SR in large scaling factors (×4, ×8). We decompose the task of image SR into 
a novel semantic map based reconstruction and refinement process. The Stage-0 GAN 
generates semantic maps from given LR images. The Stage-1 GAN reconstructs the 
high-resolution images by conditioning on the semantic maps and corresponding LR images. 
The Stage-2 GAN refines the Stage-1 results and sharpens the edges of objects, yielding 
high-resolution images with more photo-realistic details. Extensive experiments and 
comparisons with other SR methods demonstrate the effectiveness of our proposed method, 
and our method performs favorably against the compared SR methods in terms of visual 
quality. 
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