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Abstract: Images with high resolution are desired and often
required in many visual applications. When resolution can not
be improved by replacing sensors, either because of cost or
hardware physical limits, super resolution image reconstruction
method is what can be resorted to.

Super resolution image reconstruction method refers to im-
age processing algorithms that produce high quality and high
resolution images from a set of low quality and low resolution
images. The method is proved to be useful in many practical
cases where multiple frames of the same scene can be obtained,
including satellite imaging, video surveillance, video enhance-
ment and restoration, digital mosaicking, and medical imaging.

The method can be either the frequency domain approach or
the spatial domain approach. Much of the earlier works con-
centrated on the frequency domain formulation, but as more
general degradation models were considered, later researches
had been almost exclusively on spatial domain formulations.

The method in spatial domains has three stages: i) motion es-
timate or image registration, ii) interpolation onto high resolu-
tion grid and iii) deblurring process.

The super resolution grid construction in the second stage
was discussed in this paper. We applied the Maximum A-
Posteriori(MAP) reconstruction method that is one of the major
methods in the super resolution grid construction.

Based on this method, we reconstructed high resolution im-
ages from a set of low resolution images and compared the
results with those from other known interpolation methods.
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1. Introduction

Recently, resolution enhancement approach has been
one of the most active research areas, and it is called
super resolution(SR) (or HR) image reconstruction or
simply resolution enhancement.

The Super Resolution technique is also useful in
medical imaging such as computed tomography(CT) and
magnetic resonance imaging (MRI) since the acquisition
of multiple images is possible while the resolution qual-

ity is limited.

In satellite imaging applications such as remote sens-
ing and LANDSAT, several images of the same area are
usually provided, and the SR technique to improve the
resolution of target can be considered.

We applied the Maximum A-Posteriori(MAP) reconstruc-
tion method that is one of the major methods in the super reso-
lution construction.

2. The MAP Estimation
Given the general observation model,

Y=Hf+N (1)

This is not unique solution for image expansion or en-
hancement. MAP method is proposed to compute an
estimate of the high resolution image. MAP approach to

estimating f seeks the estimate f,,, for which the a-
posteriori probability, Pr{flY} is a maximum. Formally,
we seek f,,,as,

~

fusp = arg max[Prif Y]] (2)

Where Pr{flY} is the log-likelihood function. This
function can be computed using Bayes’ rule.

Pr{f|Y}=logPr(f|Y)

Pri{Y}

3
=logPr(Y | f) + logPr(f) - logPr(Y)
Applying Bayes’ rule yields,
. v
fuap = arg mrax[——l)r{f A Pr{f}} 4)
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And since the maximum fMAP is independent of Y we
have,

fuse = argmax(Pr{Y [ fiPr{f}] (5)

Since the logarithm is a monotonic increasing function,
this is equivalent to finding,

~

fyar = arg max[log Pr{Y | f} + logPr{f}] (6)

Where logPr{Y|f} is the log-likelihood function and
logPr{f} is the log of the a-priori density of f. since Y =
Hf + N, it is easy to see that the likelihood function is
determined by the probability density of the noise

fN (-) as,

Pr{Y|f} = £, (Y - HD) (7

Typically since the noise is assumed to be Gaussian,
then the use of the natural logarithm in the above deriva-
tion removers the exponential term from the den-
sity f(-) - Additionally, it is common to utilize a Markov

Random Field prior which has a Gibbs probability den-
sity of the form,

Pr{f} = %exp(- %u(f)] (¥

Where Z is a normalizing constant, g is the “tem-

3

perature” parameter of the density and y(f)is the “en-
ergy” of f. The use of the logarithm in the formulation
for the MAP solution thus greatly simplifies manipula-
tions in these cases.

If the noise is assumed to be Gaussian and the prior is
chosen to to be a convex function of f, then it is optimi-

zation of (2) is convex, so that the solution f‘mp assured

to exist and is unique. This is a very significant advan-
tage of the MAP formulation.

Schultz and Stevenson extend their earlier work [1] on
Bayesian (MAP) image interpolation for improved defi-
nition using a Huber Markov Random Field (HMRF) to
the problem of super-resolution image. They propose a
motion compensated subsampling matrix based observa-
tion model which accounts for both scene and camera
motion which occurs between images acquisitions. Here
we summarize the observation model.

(odd)

-1 1
k e{c-"T....,c,...,c+ Ly

Assume that p low-resolution  frames,

y['"l my. k] with
andm, €{12,....M,}, m,e{l,2,...,M,} are observed.
The objective is to reconstruct a super resolution im-
age f[n,,n,,c], the center frame in the observed image

sequence. A subsampling model, which models the spa-

tial integration of sensors in the detector array, is pro-
posed for the ¢" observed frame:

ylm,,m,,c]= qi qff SIn,.n,,cl 9)

m=qny —q+ln,=gn,~q+1

This relationship for the ¢" (center) frame may be
more succinctly written using lexicographic ordering of
the LR and SR images as,

yc = Hcfc (10)

Where H_ e RMMa MM,y g the subsampling matrix
relating the SR image f_ with the observed framey .
The remaining observed images y, are related to f,

via motion-compensated subsampling matrices which
compensate for the effects of motion occurring between
frames as,

y. =H.f +u,,

for ke{c—”—",...,c—l,c+1,...,c+"T—1} (1D

H, € RMMa'MM: s the motion-compensated sub-
sampling matrix which relates the k* LR observation
to the SR image f_ which is temporally coincident with
the center frame in the LR sequence. The vector u,
contains pixels which are unobservable fromf_, but pre-
sent inf, . The elements of u, are not known since f,
is unknown. Notice that rows of H, which contain use-
ful information are those for which elements of y,_ are

observed entirely from motion compensated elements of
f,. To improve robustness, rows for which this is not

true are removed, yielding a reduced set of equations,

v, =H.f. (12)
In practice H, is unknown and must be estimated
from the observed LR frames y, andy_. Thisresult in,
yi = I:I{(fc +n, (13)

Where n, contain the errors resulting from the use of

the estimate l:l'k The elements of n,_ are assumed to be

independent identically distributed Gaussian random
variables. With p observed frames we have the system

of equations:
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Yoy = H o foo+ 0

%) %) {5

Yed = }:{,cl fo + ngy (14)
yl: = HC fc O

y,c+l = ﬁ,cﬂ fc + nc+1

y' .= H coy foo+ oy

“5 %) %)

This may be written as a stacked set of equations,
Y=Hf +N (15)

The SR image f, is estimated using the MAP crite-

rion as,

f, = argmax[log Pr{f, | {y,}}] (16)

which after applying Bayes' rule may be written,

f =arg max{log Pr{f,} + logPr{{y,} )] (1)

Schultz and Stevenson use the Huber Markov random
field (HMRF) for the prior termlogPr{f,}, which 1s a

discontinuity preserving image model, which allows
edge reconstruction while imposing smoothness con-
straints on reconstruction. It is assumed that motion es-
timation errors between frames are independent thus, the
likelihood term may be written in the form
Pr{{y }!f.} =TI, Pr{y, | f.}. Taking into account that

H, is known exactly, finding fc requires the solution

of the constrained optimization,

Find
f, =argmax, . (log Pr{f,} +log Pr{{y, .k # c}|f,}]
(18)
Subject to
F={f:Hf=y,)} (19)

3. Examples

Camera: UNIQ UC 900
Frame grabber: imagination pxd-1000
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Fig. 1. CCD image capture

Fig. 2. Original image

Fig. 3. Blurring image(85X85, 0=2)

Fig. 4. Nearest neighbor 4X zoom(340X340)

Fig. 5. bilinear 4X zoom(340




(2]

31

Fig. 6. Bicubic 4X zoom(340X<340)

[4]

Fig. 7. Restoration/deblurrer (baash, r=12)

Fig. 8. Super resolution reconstruction

4. Conclusions

The MAP estimation that provides improved definition
image expansion and restoration, when compare to vari-
ous methods such as nearest neighbor interpolation, bi-
linear interpolation, bicubic interpolation.[Fig.4~8]

The MAP framework allows direct incorporation of a-
priori constraints on the solution essential for finding
high quality solution to the ill-posed super resolution
inverse problem.

The MAP formulation is thus one of the most promis-
ing and flexible approaches to super resolution image
reconstruction.
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