• Title/Summary/Keyword: super fiber

Search Result 108, Processing Time 0.026 seconds

Dyeing of High Strength and High Molecular Weight Polyethylene Fiber Using Super Hydrophobic Fluorescence Dyes (초소수성 형광염료에 의한 고강도/고분자량폴리에틸렌섬유의 염색)

  • Kim, Taekyeong;Park, Jihoon;Lee, Junheon;Kim, Taegun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2017
  • Three super hydrophobic fluorescence dyes were selected to dye high molecular weight polyethylene fiber and their molar absorptivity, emission spectrum, and quantum yield were measured. From the results of color strength on the fiber, all the three dyes exhibited linear increase according to the dye concentration and Fluoro3 dye showed the highest color strength among them. Emission strength of the fluorescence dyes on the fiber was investigated according to the dye concentrations. The emission was increased with the increase of the dye concentration at relatively low dye concentration and then after showing the maximum emission strength the emission was decreased at higher dye concentrations. The highest emission was obtained in Fluoro2 dye. Color fastness to washing and rubbing was generally good enough, however, especially to light, only Fluoro3 dye exhibited rating 3 acceptable practically and Fluoro1 and 2 was ratings 1 which is unacceptable level.

An Experimental Study on Internal Force By Using Fiber Rope Concrete Beam (섬유로프 인장 배치 시 콘크리트 보의 내력에 관한 실험적 연구)

  • Choi, Jae-Nam;Jin, Sung-Il;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • This is a study to confirm how to improve and substitute the existing re-bar with other material such as a fiber rope, especially super fiber rope having much more strong tensile strength. 6(b) different fiber rope reinforced beam with a section of $20{\times}30cm$ have been made and tasted as variables designed in the study. The larger diameter of fiber rope, the more capacity of the beam, even though fiber reinforced beam are increased with ten(10)percent, each. Lower capacity of fiber-reinforced beam than normal RC beam has been analyzed theoretically and empirically, based on a lot of experiences of the same size beam test. Fiber rope-reinforced concrete beam does not have sufficient capacity than RC beam due to insufficient bonding capacity of fiber rope in concrete. It leads to decrease beam bearing capacity and crack around lower center of the beam. Therefore, bonding reinforcement of fiber rope beam such as pinning a triangles steel pin in each knot of fiber rope contributes to improving bearing capacity of fiber rope reinforcing beam.

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

Dyeing of High Strength and High Molecular Weight Polyethylene Fiber Using Super Hydrophobic Red Fluorescence Dyes (고강도/고분자량 폴리에틸렌 섬유의 적색 초소수성 형광염료 염색)

  • Kim, Taegun;Lee, Junheon;Park, Jihoon;Kim, Taekyeong
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.237-244
    • /
    • 2018
  • Three super hydrophobic red fluorescence dyes were selected to dye high molecular weight polyethylene fiber. Their absorbance and emission spectra were obtained and Stokes' shift was measured. Fluorescence emission strength of the dyes on the fiber was investigated and therefore Fluoro Red 3 was determined as the best one among those three dyes in this experiment. Dyeing properties and fluorescence intensities were investigated using the Fluoro Red 3 on high molecular weight polyethylene fiber at various dyeing conditions. The optimum concentration of a dispersing agent was appeared at 10wt% in aqueous solution. The best dyeing was obtained at $125^{\circ}C$ for 1 hour. The color fastnesses to the washing and rubbing were as high as ratings 4~5, however, the fastness to light was exhibited ratings 2~3.

An Experimental study on Spalling Properties of Super High Strength Concrete with PP Fiber (PP섬유 혼입에 따른 초고강도콘크리트 폭렬 특성에 관한 실험적 연구)

  • Hyun, Tae-Yang;Cho, Yun-Gu;Park, Dae-Gyun;Kim, Jun-Hyung;Choi, Jong-Kwon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.283-284
    • /
    • 2009
  • The purpose of this study is to investigate the spalling resistance of super high strength concrete with polypropylene(PP) fiber after 3 hours unstressed fire test. Tests have been carried out as a function of PP fiber quantity and concrete strength(100MPa, 150MPa). The results indicate that the spalling resistance will be achieved in suitable amount of PP fiber.

  • PDF

The process optimization for development of super deep black fiber (고심색용 폴리에스테르 섬유제품의 개발을 위한 공정최적화 연구)

  • Kim, Tae-Kyeong;Jeon, Jun-Hyung;Kim, Eun-Cheol
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.53-60
    • /
    • 2007
  • In order to optimize the process for development of super deep black fiber, the silica-containing polyester fabric, SN2000, was investigated in terms of mass reduction process by sodium hydroxide, selection of high color strength dyes, and resin treatment. As the results, the mass reduction condition which used 15g/L of sodium hydroxide at $120^{\circ}C$ was determined and Dianix Deep Black Plus was selected for the best deep coloration at around 5% owf. Contrary to the prevailed understanding that the additional use of chromatic dyes would enhance the deep coloration, four kinds of chromatic dyes such as yellow, red, blue, and green dyes did not make great effect on the deep coloration. To increase the effect, the commercial resin that has low refractive index was used additionally and the resin made it possible to lower the lightness of the fabrics down to 8.7 which was generally accepted for super highly deep black fabric.

Coloration of Pure Polypropylene Fiber with Super Hydrophobic Dyes; Application of Anthraquinone Derivatives with linear Alkyl Substituents

  • Kim, Tae-Kyeong;Yoon, Seok-Han;Hong, Jin-Pyo;Kim, Hong-Je;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.30-34
    • /
    • 2006
  • Polypropylene fiber was dyed with 4 super hydrophobic dyes having different alkyl derivatives on the same chromophore. Double-tailed cationic surfactant, didodecyldimethylammonium bromide(DDAB), was used to make dye-dispersant complex to improve the dispersion of dyes. As the alkyl groups are longer and the hydrophobicity is increased, the dyeability onto polypropylene fiber was improved and deep coloration was obtained. As for the fastness properties, wash fastness was relatively good, while light fastness was bit low.

A study on the fire resistance properties of high strength concrete by incorporation of combined fiber (복합섬유 혼입에 의한 고강도콘크리트의 내화특성에 관한 연구)

  • Kim, Jeong-Jin;Kim, Kwang-Ki;Park, Soon-Jeon;Lee, Joo-Ho;Shin, Jae-Kyung;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.469-470
    • /
    • 2009
  • Recently, so that HSC can secure the fire resistance properties at the time of a fire in super tall building suggested method of combined fiber. Thus, there is the purpose to develop the high fireproof concrete which applied method of combined fiber which can satisfy flowability and the fire resistance properties of HSC for construction of the super tall building.

  • PDF

Optimization of 40 Gb/s WDM Systems Using Super-Gaussian RZ Pulses

  • Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae;Choi, Byeong-Yoon
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.226-231
    • /
    • 2008
  • 40 Gbps WDM Systems using super-Gaussian RZ pulses have been studied by numerical simulation to optimize their performance. The assumption of standard single mode fiber is valid when existing WDM systems are required to upgrade their performance to 40Gbps. It is shown that the standard single mode fiber can transmit optical signals over 720 km (Q > 10) by optimizing optical and electrical filter characteristics at the receiver and by compensation of dispersion. However, it is also shown that ${\pm}0.3%$ dispersion compensation tolerance per span (80 km) could prohibit transmitting over 320km (Q > 10). In addition, a duty cycle of less than 0.4 degrades system performance significantly.