• 제목/요약/키워드: super ensemble model

검색결과 7건 처리시간 0.022초

광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측 (Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors)

  • 김화수;곽종흠;소선섭;서명석;박정규;김맹기
    • 한국지구과학회지
    • /
    • 제23권7호
    • /
    • pp.587-596
    • /
    • 2002
  • 경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 ${\alpha}$=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.

레이더 강우 앙상블과 다양한 유출모형의 블랜딩을 활용한 최적 유출곡선 산정 (Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of RunoffsBasin)

  • 이명진;주홍준;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.135-135
    • /
    • 2017
  • 최근 강우-유출 모형은 물리적 현상에 근거한 확정론적 모의 모형과 물리적 성분으로 설명할 수 없는 내용에 대해 통계적으로 접근하는 추계학적 모의 모형 등이 계속 연구되고 있어 자연현상에 가까운 결과를 기대할 수 있게 되었다. 하지만 우리나라의 경우 많은 연구에도 불구하고 돌발성 집중호우, 여름철 집중되는 강우 등으로 인해 재난이 반복적으로 발생하고 있어 모형의 정확성에 대한 논의가 지속되고 있다. 동일한 유역에 동일한 입력자료를 사용하더라도 사용하는 모형에 따라 유출 분석결과는 상이하며 이는 유출 해석에 대한 불확실성으로 작용한다. 본 연구에서는 앙상블 및 블랜딩 기법을 사용하여 각 강우-유출 모형의 불확실성을 고려하여 최적 유출량을 산정하고자 한다. 대상 유역으로는 한강 수계에 있는 중랑천 유역을 선정하였으며, Distributed 모형인 Vflo 모형과 Lumped 모형인 저류함수 모형, SSARR모형, TANK 모형을 이용하여 유출 분석을 실시하였다. 그 후, Multi-Model Super Ensemble(MMSE), Simple Model Average(SMA), Mean Square Error(MSE) 방법 등의 blending 기법을 이용하여 하나의 통합된 형태의 유출 분석 결과를 제시하였으며, 최적 유출량 산정을 위한 blending 기법을 선정하였다. 본 연구를 통해 동일한 강우 시나리오에 대한 여러 강우-유출 모형에 대한 정확도를 확인하였으며, 앙상블 및 블랜딩 기법을 사용하여 유출 분석에 대한 정확도를 향상시킬 수 있을 것으로 판단된다.

  • PDF

U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가 (Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN)

  • 유지윤;윤대웅
    • 지구물리와물리탐사
    • /
    • 제25권3호
    • /
    • pp.140-161
    • /
    • 2022
  • 탄성파 탐사 자료 획득 시 자료의 일부가 손실되는 문제가 발생할 수 있으며 이를 위해 자료 보간이 필수적으로 수행된다. 최근 기계학습 기반 탄성파 자료 보간법 연구가 활발히 진행되고 있으며, 특히 영상처리 분야에서 이미지 초해상화에 활용되고 있는 CNN (Convolutional Neural Network) 기반 알고리즘과 GAN (Generative Adversarial Network) 기반 알고리즘이 탄성파 탐사 자료 보간법으로도 활용되고 있다. 본 연구에서는 손실된 탄성파 탐사 자료를 높은 정확도로 복구하는 보간법을 찾기 위해 CNN 기반 알고리즘인 U-Net과 GAN 기반 알고리즘인 cWGAN (conditional Wasserstein Generative Adversarial Network)을 탄성파 탐사 자료 보간 모델로 사용하여 성능 평가 및 결과 비교를 진행하였다. 이때 예측 과정을 Case I과 Case II로 나누어 모델 학습 및 성능 평가를 진행하였다. Case I에서는 규칙적으로 50% 트레이스가 손실된 자료만을 사용하여 모델을 학습하였고, 생성된 모델을 규칙/불규칙 및 샘플링 비율의 조합으로 구성된 총 6가지 테스트 자료 세트에 적용하여 모델 성능을 평가하였다. Case II에서는 6가지 테스트 자료와 동일한 형식으로 샘플링된 자료를 이용하여 해당 자료별 모델을 생성하였고, 이를 Case I과 동일한 테스트 자료 세트에 적용하여 결과를 비교하였다. 결과적으로 cWGAN이 U-Net에 비해 높은 정확도의 예측 성능을 보였으며, 정량적 평가지수인 PSNR과 SSIM에서도 cWGAN이 높은 값이 나타나는 것을 확인하였다. 하지만 cWGAN의 경우 예측 결과에서 추가적인 잡음이 생성되었으며, 잡음을 제거하고 정확도를 개선하기 위해 앙상블 작업을 수행하였다. Case II에서 생성된 cWGAN 모델들을 이용하여 앙상블을 수행한 결과, 성공적으로 잡음이 제거되었으며 PSNR과 SSIM 또한 기존의 개별 모델 보다 향상된 결과를 나타내었다.

머신러닝을 활용한 자동차 시트용 폴리우레탄 발포공정의 불량 예측 모델 개발 (A Development of Defeat Prediction Model Using Machine Learning in Polyurethane Foaming Process for Automotive Seat)

  • 최낙훈;오종석;안종록;김기선
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.36-42
    • /
    • 2021
  • 최근 4차 산업혁명으로 인해 제조업계에서는 제조업의 인공지능을 접목시켜 효율성을 극대화하는 스마트 팩토리 붐이 일어나고 있다. 특히 자동차 부품 제조 및 생산에 널리 적용되어 불량을 낮추는 연구들이 활발히 진행되고 있다. 이에 본 연구에서는 머신러닝을 통한 불량예측을 시트 폼 발포공정에 접목시켜 발포공정의 효율성을 극대화하는 연구를 진행하였다. 자동차 시트폼 에서 주로 사용되는 폴리우레탄 폼(polyurethane foam)은 폴리올(polyol, 이하 POL)과 이소시아네이트(isocyanate, 이하 ISO)를 혼합 및 발포하는 공정으로 제조되며, 각 원료의 혼합비율과 온도의 변화에 따라 제품의 특성이 변화한다. 이에 본 연구에서는 발포공정에서 수집되는 인자별 데이터값을 머신러닝에 적용하여 불량을 예측하고자 한다. 머신러닝에 사용되는 알고리즘으로는 의사결정트리, kNN, 앙상블 알고리즘을 사용하였으며 학습은 5,147개의 데이터를 사용하였으며, 학습된 결과를 1,000개의 검증용 데이터에 적용한 결과, 세 알고리즘 중 앙상블 알고리즘에서 최대 98.5 %의 정확도를 확인할 수 있었다. 이러한 결과를 통해 발포공정에서 실시간으로 수집되는 데이터를 통해 현재 생산되는 부품의 불량 여부를 확인할 수 있으며, 나아가 각 인자를 조절하여 불량률을 개선할 수 있음을 짐작할 수 있다고 사료된다.

Using Bayesian tree-based model integrated with genetic algorithm for streamflow forecasting in an urban basin

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.140-140
    • /
    • 2021
  • Urban flood management is a crucial and challenging task, particularly in developed cities. Therefore, accurate prediction of urban flooding under heavy precipitation is critically important to address such a challenge. In recent years, machine learning techniques have received considerable attention for their strong learning ability and suitability for modeling complex and nonlinear hydrological processes. Moreover, a survey of the published literature finds that hybrid computational intelligent methods using nature-inspired algorithms have been increasingly employed to predict or simulate the streamflow with high reliability. The present study is aimed to propose a novel approach, an ensemble tree, Bayesian Additive Regression Trees (BART) model incorporating a nature-inspired algorithm to predict hourly multi-step ahead streamflow. For this reason, a hybrid intelligent model was developed, namely GA-BART, containing BART model integrating with Genetic algorithm (GA). The Jungrang urban basin located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 39 heavy rainfall events during 2003 and 2020 that collected from the rain gauges and monitoring stations system in the basin. For the goal of this study, the different step ahead models will be developed based in the methods, including 1-hour, 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour step ahead streamflow predictions. In addition, the comparison of the hybrid BART model with a baseline model such as super vector regression models is examined in this study. It is expected that the hybrid BART model has a robust performance and can be an optional choice in streamflow forecasting for urban basins.

  • PDF

나선형 형상의 초고층건물의 공력감쇠의 특성 (Characteristics of Aerodynamic Damping on Helical-Shaped Super Tall Building)

  • 김원술;이진학;타무라 유키오
    • 대한토목학회논문집
    • /
    • 제37권1호
    • /
    • pp.9-17
    • /
    • 2017
  • 본 연구에서는 변위 및 가속도 응답의 저감 효과에 있어서, 유리한 형상인 $180^{\circ}$ 나선형(Helical $180^{\circ}$) 초고층건물을 대상으로 공력진동실험 수행하여 나선형 초고층건물의 공력감쇠율의 특성을 조사하였다. 공력감쇠율은 RD법(Random decrement technique)을 이용하여 평가하였다. 또한 RD법에서 부분 샘플의 개수와 초기 조건 값의 변화가 공력감쇠율에 어떤 영향을 미치는지 조사하였다. 실험 결과, 최소 2000개 이상의 부분 샘플을 이용하여 앙상블 평균을 적용하면 공력감쇠율의 불규칙한 변동의 폭을 줄일 수 있음을 검증했고, 기존 연구들과도 잘 부합되는 것을 알 수 있었다. 정방형 모형과 $180^{\circ}$ 나선형 모형의 공력감쇠율의 결과를 살펴보면, 풍방향 공력감쇠율은 건물의 형상이 다름에도 불구하고 무차원 풍속에 따른 공력감쇠율은 매우 유사한 경향을 보였다. 한편, 정방형 모형에 대한 풍직각방향의 공력감쇠율은 $180^{\circ}$ 나선형모형의 공력감쇠율의 특성과는 다른 양상을 보이는 것을 알 수 있었다. 특히 풍향 변화에 따른 $180^{\circ}$ 나선형 모형의 Y방향에 대한 공력감쇠율은 풍향의 변화와 상관없이, 전반적으로 0에 가까운 값을 갖는 경향이 나타났고, 무차원 풍속의 증가와 함께 변동의 폭은 작지만 점진적으로 증가하는 경향을 보였다. 초기 조건 값의 변화에 따른 공력감쇠율을 평가한 결과, 초기 조건 값을 "응답의 표준편차" 또는 RD 함수에 대한 최적화 "${\sqrt{2}}{\times}$응답의 표준 편차"를 적용하여 평가한 공력감쇠율은 매우 유사한 결과 값과 분포를 보이는 것으로 나타났다.

고차원 관측자료에서의 Q-학습 모형에 대한 이중강건성 연구 (Doubly-robust Q-estimation in observational studies with high-dimensional covariates)

  • 이효빈;김예지;조형준;최상범
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.309-327
    • /
    • 2021
  • 동적 치료 요법(dynamic treatment regimes; DTRs)은 다단계 무작위 시험에서 개인에 맞는 치료를 제공하도록 설계된 의사결정 규칙이다. 모든 개인이 동일한 유형의 치료를 처방받는 고전적인 방법과 달리 DTR은 시간이 지남에 따라 변할 수 있는 개별 특성을 고려한 환자 맞춤형 치료를 제공한다. 최적의 치료 규칙을 파악하기 위한 회귀 기반 알고리즘 중 하나인 Q-학습 방법은 쉽게 구현될 수 있기 때문에 더욱 인기를 끌고 있다. 그러나 Q-학습 알고리즘의 성능은 Q-함수를 제대로 설정했는지의 여부에 크게 의존한다. 본 논문에서는 고차원 데이터가 수집되는 DTRs 문제에 대한 다양한 이중강건 Q-학습 알고리즘을 연구하고 가중 최소제곱 추정 방법을 제안한다. 이중강건성(double-robustness)은 반응변수에 대한 모형 혹은 처리변수에 대한 모형 둘 중 하나만 제대로 설정되어도 불편추정량을 얻을 수 있음을 의미한다. 다양한 모의실험 연구를 통해 제안된 방법이 여러 시나리오 하에서도 잘 작동함을 확인하였으며 실제 데이터 예제를 통해 방법론에 대한 예시를 제시하였다.