DOI QR코드

DOI QR Code

Characteristics of Aerodynamic Damping on Helical-Shaped Super Tall Building

나선형 형상의 초고층건물의 공력감쇠의 특성

  • Received : 2016.03.02
  • Accepted : 2016.12.26
  • Published : 2017.02.01

Abstract

Characteristics of aerodynamic damping ratios of a helical $180^{\circ}$ model which shows better aerodynamic behavior in both along-wind and across-wind responses on a super tall building was investigated by an aeroelastic model test. The aerodynamic damping ratio was evaluated from the wind-induced responses of the model by using Random Decrement (RD) technique. Further, various triggering levels in evaluation of aerodynamic damping ratios using RD technique were also examined. As a result, it was found that when at least 2000 segments were used for evaluating aerodynamic damping ratio for ensemble averaging, the aerodynamic damping ratio can be obtained more consistently with lower irregular fluctuations. This is good agreement with those of previous studies. Another notable observation was that for square and helical $180^{\circ}$ models, the aerodynamic damping ratios in along-wind direction showed similar linear trends with reduced wind speeds regarding of building shapes. On the other hand, for the helical $180^{\circ}$ model, the aerodynamic damping ratio in across-wind direction showed quite different trends with those of the square model. In addition, the aerodynamic damping ratios of the helical $180^{\circ}$ model showed very similar trends with respect to the change of wind direction, and showed gradually increasing trends having small fluctuations with reduced wind speeds. Another observation was that in definition of triggering levels in RD technique on aerodynamic damping ratios, it may be possible to adopt the triggering levels of "standard deviation" or "${\sqrt{2}}$ times of the standard deviation" of the response time history if RD functions have a large number of triggering points. Further, these triggering levels may result in similar values and distributions with reduced wind speeds and either may be acceptable.

본 연구에서는 변위 및 가속도 응답의 저감 효과에 있어서, 유리한 형상인 $180^{\circ}$ 나선형(Helical $180^{\circ}$) 초고층건물을 대상으로 공력진동실험 수행하여 나선형 초고층건물의 공력감쇠율의 특성을 조사하였다. 공력감쇠율은 RD법(Random decrement technique)을 이용하여 평가하였다. 또한 RD법에서 부분 샘플의 개수와 초기 조건 값의 변화가 공력감쇠율에 어떤 영향을 미치는지 조사하였다. 실험 결과, 최소 2000개 이상의 부분 샘플을 이용하여 앙상블 평균을 적용하면 공력감쇠율의 불규칙한 변동의 폭을 줄일 수 있음을 검증했고, 기존 연구들과도 잘 부합되는 것을 알 수 있었다. 정방형 모형과 $180^{\circ}$ 나선형 모형의 공력감쇠율의 결과를 살펴보면, 풍방향 공력감쇠율은 건물의 형상이 다름에도 불구하고 무차원 풍속에 따른 공력감쇠율은 매우 유사한 경향을 보였다. 한편, 정방형 모형에 대한 풍직각방향의 공력감쇠율은 $180^{\circ}$ 나선형모형의 공력감쇠율의 특성과는 다른 양상을 보이는 것을 알 수 있었다. 특히 풍향 변화에 따른 $180^{\circ}$ 나선형 모형의 Y방향에 대한 공력감쇠율은 풍향의 변화와 상관없이, 전반적으로 0에 가까운 값을 갖는 경향이 나타났고, 무차원 풍속의 증가와 함께 변동의 폭은 작지만 점진적으로 증가하는 경향을 보였다. 초기 조건 값의 변화에 따른 공력감쇠율을 평가한 결과, 초기 조건 값을 "응답의 표준편차" 또는 RD 함수에 대한 최적화 "${\sqrt{2}}{\times}$응답의 표준 편차"를 적용하여 평가한 공력감쇠율은 매우 유사한 결과 값과 분포를 보이는 것으로 나타났다.

Keywords

References

  1. Architectural Institute of Japan (2000). Damping in Building. Maruzen Inc. (in Japanese).
  2. Architectural Institute of Korea (2009). Korean Building Code and Commentary (KBC 2009), Kimoondang Publishing Co. Ltd. (in Korean).
  3. Asmussen, J. C. (1997). Modal analysis based on the random decrement technique-application to civil engineering structures, Ph.D. Thesis, University of Aalborg, Denmark.
  4. ESDU 83009 (2012). "Damping of structures, Part 1: Tall Buildings." ESDU International plc, 27 Corsham Street, London N1 6UA.
  5. Huang, P., Quan, Y. and Gu, M. (2013). "Experimental study of aerodynamic damping of typical tall buildings." Mathematical Problems in Engineering, pp. 1-9.
  6. Kim, W., Yoshida, A., Tamura, Y. and Yi, J. H. (2016). "A study on aerodynamic damping and aeroelastic instability of helical-shaped super tall building." Journal Comput. Struct. Eng. Inst. Korea, Vol. 29, No. 1, pp. 95-103 (in Korean). https://doi.org/10.7734/COSEIK.2016.29.1.95
  7. Kim, Y. C. (2014). "Aerodynamic damping ratio of super-tall buildings." Journal Archit. Inst. Korea, Vol. 30, No. 8, pp. 29-36 (in Korean).
  8. Lee, D. K., Kong, M. J. and You, D. W. (2016). "A study on buffeting responses of a in-service steel cable-stayed bridge using full-scale measurements." Journal of the Korea Society of Civil Engineers, Vol. 36, No. 3, pp. 349-359 (in Korean). https://doi.org/10.12652/Ksce.2016.36.3.0349
  9. Marukawa, H., Kato, N., Fujii, K. and Tamura, Y. (1996). "Experimental evaluation of aerodynamic damping of tall building." Journal Wind Eng. Ind. Aerodyn., Vol. 59, pp. 177-190. https://doi.org/10.1016/0167-6105(96)00006-2
  10. Quan, Y., Gu, M. and Tamura, Y. (2005). "Experimental evaluation of aerodynamic damping of square super high-rise buildings." Wind and Structures, Vol. 8, No. 5, pp. 309-324. https://doi.org/10.12989/was.2005.8.5.309
  11. Rodrigues, J. and Brincker, R. (2005). "Application of the random decrement technique in operational modal analysis." Proceedings of the 1st International Operational Modal Analysis Conference, pp. 191-200.
  12. Tamura, Y. and Suganuma, S. Y. (1996). "Evaluation of amplitudedependent damping and naturanl frequency of buildings during strong winds." Journal Wind Eng. Ind. Aerodyn., Vol. 59, pp. 179-191.
  13. Tamura, Y., Shimada, K. and Hibi, K. (1993). "Wind response of a tower (Typhoon observation at Nagasaki Huis Ten Bosch Domtoren)." Journal Wind Eng. Ind. Aerodyn., Vol. 50, pp. 309-318. https://doi.org/10.1016/0167-6105(93)90086-4
  14. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Kim, Y. C. (2011). "Wind force characteristics of tall buildings with unconventional configurations (part 4) aerodynamic and response characteristics of buildings with composite configurations." Annual Meeting of Architectural Institute of Japan, pp. 41-42 (in Japanese).
  15. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Kim, Y. C. (2012). "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations." Journal Wind Eng. Ind. Aerodyn., Vol. 107-108, pp. 179-191. https://doi.org/10.1016/j.jweia.2012.04.014
  16. Watanabe, Y., Isyumov, N. and Davenport, A. G. (1997). "Empirical aerodynamic damping function for tall building." Journal Wind Eng. Ind. Aerodyn., Vol. 72, pp. 313-321. https://doi.org/10.1016/S0167-6105(97)00260-2