Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors

광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측

  • Kim, Hwa-Su (Department of Atmospheric Science, Kongju National University) ;
  • Kwak, Chong-Heum (Department of Atmospheric Science, Kongju National University) ;
  • So, Seon-Sup (Department of Atmospheric Science, Kongju National University) ;
  • Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University) ;
  • Park, Chung-Kyu (Climate Prediction Division, Climate Bureau, Korea Meteorological Administration) ;
  • Kim, Maeng-Ki (Department of Atmospheric Science, Kongju National University)
  • Published : 2002.10.31

Abstract

A super ensemble model was developed for the seasonal prediction of regional precipitation in Korea using the lag correlated large scale predictors, based on the empirical orthogonal function (EOF) analysis and multiple linear regression model. The predictability of this model was also evaluated by cross-validation. Correlation between the predicted and the observed value obtained from the super ensemble model showed 0.73 in spring, 0.61 in summer, 0.69 in autumn and 0.75 in winter. The predictability of categorical forecasting was also evaluated based on the three classes such as above normal, near normal and below normal that are clearly defined in terms of a priori specified by threshold values. Categorical forecasting by the super ensemble model has a hit rate with a range from 0.42 to 0.74 in seasonal precipitation.

경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 ${\alpha}$=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.

Keywords

References

  1. 강인식, 백희정, 1993, 한반도 겨울철 월평균 기온의 장기예측. 한국기상학회지, 29, 253-262
  2. 강인식, 허창회, 민경덕, 1992, 한반도 여름철 강수량의 장기예측. 한국기상학회지, 28, 283-292
  3. 김우철, 김재주, 박병욱, 박성현, 송문섭, 이상열, 이영조, 전종우, 조신섭, 2000, 현대통계학, 영지문화사, 337 p
  4. 문영수, 이병곤, 권혜영, 1995, 강수량의 장기변동에 의한 한국의 지역구분. 한국지구과학회지, 16, 3843
  5. 박성현, 1998, 회귀분석, 민영사, 666 p
  6. 이준이, 강인식, 허창회, 1999, 통계적 방법을 이용한 한반도 봄철 기온의 장기 예측. 한국기상학회지, 35, 372-383
  7. 허창회, 강인식, 1988, 한국 지역 강수의 변동성에 관한 연구. 한국기상학회지, 24, 38-48
  8. Anderson, J., H. van den Dool, Bamston, A., Chen, W., Stem, W., and Ploshay, J., 1999, Pmsent-day Capabili-ties of numerical and statistical models for atmospheric extratropical seasonal simulation and prediction, Bulle-tin of American Meteorological Society, 80, 1349-1361 https://doi.org/10.1175/1520-0477(1999)080<1349:PDCONA>2.0.CO;2
  9. Hwang, S. N, Schemm, J. K. E., Bamston, A. G., Kwon, W. T, 2001, Long-Lead Seasonal Fonxast Skill in Far Eastern Asia Using Canonical Correlation Analysis. Joumal of Climate, 14, 3005-3016 https://doi.org/10.1175/1520-0442(2001)014<3005:LLSFSI>2.0.CO;2
  10. He Y, and Bamston, A. G., 1996, Long-Lead Foiecasts of Seasonal Precipitation in the Tropical Pacific Islands Using CCA. Joumal of Climate, 9, 2020-2035 https://doi.org/10.1175/1520-0442(1996)009<2020:LLFOSP>2.0.CO;2
  11. Kim, M. K., Kim. H. S., Kwak, C. H., Suh, M. S., Park, C. K., 2002, Seasonal prediction of regional tempera-ture in Korea using the lag-correlated large-scale Predic-tors. Accepted to Joumal of the Korean Meteorological Society
  12. Michaelson, J., 1987, Cross-validation in statistical climate forecast models. Joumal of Climate Application Meteo-rology, 26, 1589-1600 https://doi.org/10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2
  13. Shabbar, A. and Bamston, A. G., 1996, Skill of seasonal climate forecasts in Canada using canonical correlation analysis. Monthly Weather Review, 124, 2370-2385 https://doi.org/10.1175/1520-0493(1996)124<2370:SOSCFI>2.0.CO;2