• Title/Summary/Keyword: sun tracking

Search Result 553, Processing Time 0.037 seconds

An Accurate Sun Tracking System (태양광 집적을 위한 태양위치 추적장치)

  • 백현규;곽만섭;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.737-741
    • /
    • 2001
  • An illumination system by using sun light is optimally designed. The developing system consists of main controler for sun tracking, Cds sensor module, and light translation system based on optical fiber. A sun tracking algorithm is designed in such away that the illumination system stand with straight angle to the direction of sun within $\pm$2$^{\circ}$as permissible tolerance. To show the validity of the developed system, several experiments will be illustrated.

  • PDF

Comparison of the Thermal Performance with Stationary and Tracking Evacuated CPC Collectors (고정형과 추적형 Evacuated CPC 집열기의 열성능 비교)

  • Yun, Seong-Eun;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.19-25
    • /
    • 2004
  • A numerical study is performed to investigate the effect of sun tracking on the thermal performance of the evacuated compound parabolic concentrator (CPC) collectors. The evacuated CPC collectors consist of a two-layered glass tube, a copper tube and a reflector. The collector has a copper tube as an absorber and a reflector inside a glass tube. The water is used as a working fluid. The length and the diameter of the glass tube are 1,700mm and 70mm, respectively. The length and the diameter of the copper tube are 1,700mm and 25.4mm, respectively. Ray tracing analysis is carried out in order to compare absorbed heat fluxes on the absorber surface of the stationary and tracking collectors. The collected energy is calculated and compared with that on a fixed surface tilted at $35^{\circ}$ on the ground and facing south. The results indicate that the collected solar energy of the sun tracking system is significantly larger than that of a stationary collector. The sun tracking evacuated CPC collectors show a better performance with an increase in the thermal efficiency of up to 14% compared with an identical stationary collector.

An intelligent sun tracker with self sensor diagonosis system (자기 센서진단기능을 가진 지능형 태양추적장치)

  • 최현석;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.452-456
    • /
    • 2002
  • The sensor based control system has some sensor fault while operating in the field. In this paper, a sensor fault detection and reconstruction system for a sun tracking controller has been researched by using polynomial regression and principle component analysis approach. The developed sun tracking system controls tow actuators with sensor based mechanism as on-line control and sun orbit information as off-line control, alternatively. To show the validity of the developed system, several experiments were illustrated.

  • PDF

Solar Tracking Performance using a Heliostat and Uniform Irradiation of LED Light for a Plant Factory (식물공장의 헬리오스탯을 이용한 태양광 추적성능 및 LED 균일광 조사)

  • Koo, Kyung-Wan;Kim, Tae-Jin;Kim, Youngshik;Ryu, Bong-Jo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1761-1767
    • /
    • 2015
  • This paper deals with the solar tracking performance using a small heliostat, the light reduction rate of the sun light, and the performance of uniform irradiation of LED light for a plant factory. A high precision encoder is attached to the heliostat to improve tracking accuracy. As a result, our heliostat-based solar tracking systems track efficiently the movement of the sun light in experimental tests. The reduction rate of the sun light in the plant factory is then measured by using an illumination sensor. The average reduction rate is 4.29%, which represents lower light reduction rates. In uniform irradiation tests of LED light, sixteen points are measured, and overall deviations of irradiation were within eight percents.

Designed of Intelligent Solar Tracking System using Fuzzy State-Space Partitioning Method (퍼지 상태 공간 분할 기법을 이용한 지능형 태양광 추적시스템 설계)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2072-2078
    • /
    • 2011
  • In photovoltaic(PV) system, for obtaining maximum efficiency of solar power systems, the solar tracking system must be controlled to match position of the sun. In this paper, we design the solar tracking system to track movement of the sun using CdS sensor modules and to determine direction of the sun under shadow of directions. In addition, for an intelligent computation in tracking of the sun, a fuzzy controller is allocated to space avaliable for splitting area of fuzzy part for the fuzzy input space(grid-type fuzzy partition) in which a fuzzy grid partition divides fuzzy rules bases. As well, a simple model of solar tracking system is designed by two-axis motor control systems and the 8-direction sensor module that can measure shadow from CdS sensor modules by matching of axis of CdS modules and PV panels. We demonstrate this systems is effective for fixed location and moving vessels and our fuzzy controller can track the satisfactorily.

A Survey on Track Fusion for Radar Target Tracking (레이다 항적융합 연구의 최근 동향)

  • Choi, Won-Yong;Hong, Sun-Mog;Lee, Dong-Gwan;Jung, Jae-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An architecture for multiple radar tracking systems can be broadly categorized according to the methods in which the tracking functions are performed : central-level tracking and distributed tracking. In the central-level tracking, target tracking is performed using observations from all radar systems. This architecture provides optimal solution to target tracking. In distributed tracking, tracking is performed at each radar system and the composite track information is formed through track fusion integrating multiple radar-level tracks. Track-to-track fusion and track-to-track association are required to perform in this architecture. In this paper, issues and recent research on the two tracking architectures are surveyed.

Bi-directional hybrid solar tracking system using FPGA (FPGA를 이용한 양방향 및 혼합식 태양 추적을 이용한 태양광발전 시스템)

  • Ahn, Jun-yeong;Jeon, Jun-young;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.450-453
    • /
    • 2017
  • In this abstract, the FPGA system using solar tracking is introduced. Solar tracking system combined with sensor tracking and solar altitude programming is utilized. The sensor tracking system consists of image sensor, light sensor, and the programs for sun altitude received by the computer. The sun altitude is received from the national weather database by wireless communication. The goal is to have maximum energy generation efficiency using bi-directional tracking and mixed tracking with FPGAs that are relatively inexpensive in terms of developing and programming the system.

  • PDF

Computation of Sun Position for the Sun Tracking Control System of Solar Concentrator (집광식 태양열 집열기의 태양추적장치를 위한 태양위치계산)

  • Park, Y.C.;Kang, Y.H.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.87-94
    • /
    • 1998
  • This work presents a method to compute the sun position(azimuth and elevation), sunrise and sunset times. Accurate computation of sun position is very important to the precise tracking of the sun for the solar concentrator, which enables the maximum collection of solar energy. Methods to compute the sun position are available in the literature already. However most of them do not have accuracy verification, thus makes hard in selecting the most accurate sun position computation method. We first select the most accurate sun position computation method among the methods presented in the literature by comparing the computed sun position with Korean Almanac of Korea Astronomy Observatory. Then a procedure to compute the sunrise and sunset times is presented. Computed sun position shows $0.02^{\circ},\;0.6^{\circ}$ and one minute differences in azimuth, elevation and sunrise/sunset times respectively compared with Korean Almanac.

  • PDF

A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation (일사량 변화에 다른 전력손실을 고려한 새로운 태양광 추적 시스템 제어)

  • Park, Ki-Tae;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper proposes a novel tacking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV hacking system. The tracking system of sensor method used in a conventional PV power station is unable to exactly track a sun position when lacking in the intensity of radiation and has the problem is malfunction of tracking system by a rapidly changing climatic. The tracking system of program method spends too much energy on the unnecessary operation of tracking system because that is unable to adapt itself to a outside factor of climatic environment. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this pap proposes a novel control algorithm of the tracking system. Also, this paper is analyzed efficiency of traditional solar tracking method and proposed method, prove validity of proposed algorithm through demonstrable study.

A Study on New PV Tracking System Including Load Dispersion

  • Lee, Sang-Hun;Song, Hyun-Jig;Park, Chan-Gyu;Song, Sung-Geon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.472-480
    • /
    • 2014
  • The In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through new coordinates transformation calculating the height and azimuth of the sun.