• 제목/요약/키워드: sun: magnetic fields

검색결과 101건 처리시간 0.026초

Iron Loss Analysis Considering Excitation Conditions Under Alternating Magnetic Fields

  • Hong, Sun-Ki;Koh, Chang-Seop
    • 조명전기설비학회논문지
    • /
    • 제24권3호
    • /
    • pp.33-38
    • /
    • 2010
  • In this paper, the nature of iron loss in electrical steel during alternating field excitation is investigated more precisely. The exact definition of AC iron loss is cleared by accurately measuring the iron loss for conditions of both the sinusoidal magnetic field and sinusoidal magnetic flux density. The results of this approach to iron loss calculations in electrical steel are compared to experimentally-measured losses. In addition, an inverse hysteresis model considering eddy current loss was developed to analyze the iron loss when the input is the voltage source. With this model, the inrush current in the inductor or transformer as well as the iron loss can be calculated.

자속밀도 파형제어에 의한 토로이달 벌크 전기강의 자기특성 측정 (Experimental Measurement of Magnetic Properties of a Toroidal-type Bulk Electrical Steel using B-waveform Control)

  • 음영환;고창섭;홍선기;신판석
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.869-875
    • /
    • 2007
  • Magnetic properties of electrical steel are, in general. measured by using Epstein frame or single sheet tester (SST). These methods, however, require very strict regulation of a specimen in its size and shape. thus, can not be easily applied to various types of specimen. On the other hand, a ring-test method, which measures only the isotropic properties, can be easily applied to most cases because it requires a toroidal-type specimen of arbitrary size. This method, especially, is considered as an unique available method for a bulk-type specimen. In this paper, a ring-test method is developed, and applied to the measurement of magnetic properties of a bulk-type electrical steel with a toroidal-type specimen. In the measurement, the magnetic properties and iron losses are measured and compared with each other at the both sinusoidal magnetic flux density and sinusoidal magnetic field intensity conditions under 0.2Hz and 60Hz alternating magnetic fields excitation. Through experimental measurements, a sinusoidal magnetic flux density condition is proven appropriate for the measurement of magnetic properties, including iron loss characteristics, of electrical steels.

전기강판의 자기특성 측정을 위한 2방향 여자 형 Single Sheet tester 개발 (Double-Excitation Type Single Sheet Tester for the Measurement of the Magnetic Characteristics of the Electrical Steel Sheets)

  • 김홍정;고창섭;홍선기;신판석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권10호
    • /
    • pp.461-469
    • /
    • 2005
  • In this paper, a double-excitation type single sheet tester is developed to measure the magnetic characteristics of the electrical steel sheets. The developed system has the uniform magnetic field area of 20$\times$20mm$^{2}$, and can be applied to the measurement of the magnetic characteristics of the Non-oriented and Grain oriented electrical steel sheets. In the developed system, the magnetic flux density and magnetic field intensity are measured by using B-coil and H-coil, respectively. The B-coil has 1 turn search coil for each direction, and H-coil has 640 and 640 turns for rolling direction and transverse direction on the Im thickness Glass-Epoxy basement, respectively. Through experiments, it Is shown that the system can measure the magnetic characteristics up to 1.87 of magnetic flux density in the rolling direction in case of the Grain oriented electrical steel sheet. The measured results are compared with those measured in Okayama university, .Japan.

이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정 (Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation)

  • 음영환;김홍정;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권5호
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

Residual magnetic field profiles and their current density profiles of coated conductors for fast and slow cut-off current operations

  • Sun, J.;Tallouli, M.;Shyshkin, O.;Hamabe, M.;Watanabe, H.;Chikumoto, N.;Yamaguchi, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권1호
    • /
    • pp.17-20
    • /
    • 2015
  • Coated conductor is an important candidate for power cable applications due to its high current density. Even for DC power cable transmission, we must study the transport properties of HTS tapes after slow and fast discharge. In order to evaluate relation of the magnetic field with applied current we developed a scanning magnetic field measurements system by employing a Hall probe. This work presents the measurements of the magnetic fields above a coated conductor by varying applied current pattern. In the work, a transport current of 100 A, less than the critical current, is applied to YBCO coated conductor. We measured the residual magnetic field distributions after cut off the transport current with slow and fast operations. The results show differences of the magnetic field profiles and the corresponding current profiles by an inverse solution from the magnetic field measurement between these two operations because of the hysteresis of coated conductor excited by the transport current.

Steering Control and Geomagnetism Cancellation for an Autonomous Vehicle using MR Sensors

  • 김홍렬;손석준;김태곤;김정희;임영철;김의선;장영학
    • 센서학회지
    • /
    • 제10권5호
    • /
    • pp.329-336
    • /
    • 2001
  • This paper describes the steering control and geomagnetism cancellation for an autonomous vehicle using an MR sensor. The magneto-resistive (MR) sensor obtains the vector summation of the magnetic fields from embedded magnets and the Earth. The vehicle is controlled by the magnetic fields from embedded magnets. So, geomagnetism is the disturbance in the steering control system. In this paper, we propose a new method of the sensor arrangement in order to remove the geomagnetism and vehicle body interference. The proposed method uses two MR sensors located in a level plane and the steering controller has been developed. The controller has three input variables ($dB_x$, $dB_y$, $dB_z$) using the measured magnetic field difference, and an output variable (the steering angle). A simulation program was developed to acquire the data to teach the neural network, in order to test the ability of a neural network to learn the steering control process. Also, the computer simulation of the vehicle (including vehicle dynamics and steering) was used to verify the steering performance of the vehicle controller using the neural network. From the simulation and field test, good result was obtained and we confirmed the robustness of the neural network controller in a real autonomous vehicle.

  • PDF

자기장을 이용한 자율주행 전기자동차의 조향제어 (Steering Control for Autonomous Electric Vehicle using Magetic Fields)

  • 김태곤;손석준;유영재;김의선;임영철
    • 센서학회지
    • /
    • 제10권2호
    • /
    • pp.134-141
    • /
    • 2001
  • 본 논문은 자기장을 이용한 자율주행 전기자동차의 조향 제어에 대한 연구이다. 도로의 중앙에 일정 간격으로 영구자석을 설치하고 차량에 자기 센서를 장착하여 차량의 이동에 따른 자기장의 변화를 측정하여 조향 제어가 되도록 하였다. 단일 자석에 의한 자계 분포로부터 일정한 간격으로 나열된 영구자석에 의한 자계를 분석하였고, 이를 이용하여 자석에 의한 직선 및 곡선 도로를 만들어 주행 시뮬레이션을 하였다. 차량의 조향 제어를 위해 신경회로망을 이용하여 제어기를 구성하고, 자석을 설치하여 만든 실험도의에서 실제 제작한 전기자동차를 이용하여 주행 실험을 하였다. 실제 주행 실험에서 차체와 외부 지자기에 의한 영향을 보상하여 제안된 방법에 의한 자율 주행 차량의 자율 주행이 가능함을 확인하였다.

  • PDF

THE SOLAR-B MISSION

  • ICHIMOTO KIYOSHI;TEAM THE SOLAR-B
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.307-310
    • /
    • 2005
  • The Solar-B is the third Japanese spacecraft dedicated for solar physics to be launched in summer of 2006. The spacecraft carries a coordinated set of optical, EUV and X-ray instruments that will allow a systematic study of the interaction between the Sun's magnetic field and its high temperature, ionized atmosphere. The Solar Optical Telescope (SOT) consists of a 50cm aperture diffraction limited Gregorian telescope and a focal plane package, and provides quantitative measurements of full vector magnetic fields at the photosphere with spatial resolution of 0.2-0.3 arcsec in a condition free from terrestrial atmospheric seeing. The X-ray telescope (XRT) images the high temperature (0.5 to 10 MK) corona with improved spatial resolution of approximately 1 arcsec. The Extreme Ultraviolet Imaging Spectrometer (EIS) aims to determine velocity fields and other plasma parameters in the corona and the transition region. The Solar-B telescopes, as a whole, will enable us to explore the origins of the outer solar atmosphere, the corona, and the coupling between the fine magnetic structure at the photosphere and the dynamic processes occurring in the corona. The mission instruments (SOT/EIS/XRT) are joint effort of Japan (JAXA/NAO), the United States (NASA), and the United Kingdom (PPARC). An overview of the spacecraft and its mission instruments are presented.

선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법 (Analysis of Magnetic Fields induced by Line Currants using Coupling of FEM and Analytical Solution)

  • 김영선;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1035-1037
    • /
    • 2005
  • The analysis of magnetic fields(2-D) induced by line currents, such as Overhead Trolley Lines or Transmission Lines, is not so easy by using the standard Finite Element Method(FEM). Mesh generation is one of the most important processes in the standard FEM. Because, the current region is relatively small compared with whole region, and actually is a line without thickness, the mesh refinement around the source lines yields many demerits. A way of supplement such a defect, we proposed the coupling scheme of analytical solution and FEM. In this study, the analytical solution is adopted around the region of line currents and FE solution is a lied to the rest of source region. And the two types of solution are coupled at the artificial boundary. To verify the usefulness of proposed algorithm, simplified model with magnetic material in FE region is chosen and analyzed. The results are compared with those of standard FEM. And the errors between them can be reduced by increasing harmonic orders.

  • PDF

Latitudinal Distribution of Sunspots Revisited

  • Cho, Il-Hyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Characteristics of latitude variations of sunspots in the northern and southern hemispheres are investigated using the daily sunspot area and its latitude during the period from 1874 to 2009. Solar magnetic activity is portrayed in the form of sunspot, regions of concentrated fresh magnetic fields observed on the surface of the Sun. By defining center-of-latitude (COL) as an area-weighted latitude, we find that COL is not monotonically decreasing as commonly assumed. In fact, small humps (or short plateaus) between solar minima can be seen around every solar maxima. We also find that when the northern (southern) hemisphere is magnetically dominant, COL is positive (negative), except the solar cycle 23, which may give a hint that these two phenomena are consistently regulated by one single mechanism. As a result of periodicity analysis, we find that several significant periodicities, such as, of ~5.5, ~11, ~49, and ~167 years.