• Title/Summary/Keyword: summarization method

Search Result 128, Processing Time 0.024 seconds

An Experimental Study on Multi-Document Summarization for Question Answering (질의응답을 위한 복수문서 요약에 관한 실험적 연구)

  • Choi, Sang-Hee;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.289-303
    • /
    • 2004
  • This experimental study proposes a multi-document summarization method that produces optimal summaries in which users can find answers to their queries. In order to identify the most effective method for this purpose, the performance of the three summarization methods were compared. The investigated methods are sentence clustering, passage extraction through spreading activation, and clustering-passage extraction hybrid methods. The effectiveness of each summarizing method was evaluated by two criteria used to measure the accuracy and the redundancy of a summary. The passage extraction method using the sequential bnb search algorithm proved to be most effective in summarizing multiple documents with regard to summarization precision. This study proposes the passage extraction method as the optimal multi-document summarization method.

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

An Automatic Summarization System of Baseball Game Video Using the Caption Information (자막 정보를 이용한 야구경기 비디오의 자동요약 시스템)

  • 유기원;허영식
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.107-113
    • /
    • 2002
  • In this paper, we propose a method and a software system for automatic summarization of baseball game videos. The proposed system pursues fast execution and high accuracy of summarization. To satisfy the requirement, the detection of important events in baseball video is performed through DC-based shot boundary detection algorithm and simple caption recognition method. Furthermore, the proposed system supports a hierarchical description so that users can browse and navigate videos in several levels of summarization. In this paper, we propose a method and a software system for automatic summarization of baseball game videos. The proposed system pursues fast execution and high accuracy of summarization. To satisfy the requirement, the detection of important events in baseball video is performed through DC-based shot boundary detection algorithm and simple caption recognition method. Furthermore, the proposed system supports a hierarchical description so that users can browse and navigate videos in several levels of summarization.

Citation-based Article Summarization using a Combination of Lexical Text Similarities: Evaluation with Computational Linguistics Literature Summarization Datasets

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.31-37
    • /
    • 2019
  • Citation-based article summarization is to create a shortened text for an academic article, reflecting the content of citing sentences which contain other's thoughts about the target article to be summarized. To deal with the problem, this study introduces an extractive summarization method based on calculating a linear combination of various sentence salience scores, which represent the degrees to which a candidate sentence reflects the content of author's abstract text, reader's citing text, and the target article to be summarized. In the current study, salience scores are obtained by computing surface-level textual similarities. Experiments using CL-SciSumm datasets show that the proposed method parallels or outperforms the previous approaches in ROUGE evaluations against SciSumm-2017 human summaries and SciSumm-2016/2017 community summaries.

Music summarization using visual information of music and clustering method

  • Kim, Sang-Ho;Ji, Mi-Kyong;Kim, Hoi-Rin
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we present effective methods for music summarization which summarize music automatically. It could be used for sample music of on-line digital music provider or some music retrieval technology. When summarizing music, we use different two methods according to music length. First method is for finding sabi or chorus part of music which can be regarded as the most important part of music and the second method is for extracting several parts which are in different structure or have different mood in the music. Our proposed music summarization system is better than conventional system when structure of target music is explicit. The proposed method could generate just one important segment of music or several segments which have different mood in the music. Thus, this scheme will be effective for summarizing music in several applications such as online music streaming service and sample music for Tcommerce.

  • PDF

Document Summarization Method using Complete Graph (완전그래프를 이용한 문서요약 연구)

  • Lyu, Jun-Hyun;Park, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.26-31
    • /
    • 2005
  • In this paper, we present the document summarizers which are simpler and more condense than the existing ones generally used in the web search engines. This method is a statistic-based summarization method using the concept of the complete graph. We suppose that each sentence as a vertex and the similarity between two sentences as a link of the graph. We compare this summarizer with those of Clustering and MMR techniques which are well-known as the good summarization methods. For the comparison, we use FScore using the summarization results generated by human subjects. Our experimental results verify the accuracy of this method, being about $30\%$ better than the others.

  • PDF

Automatic Summarization of French Scientific Articles by a Discourse Annotation Method using the EXCOM System

  • Antoine, Blais
    • Language and Information
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • Summarization is a complex cognitive task and its simulation is very difficult for machines. This paper presents an automatic summarization strategy that is based on a discourse categorization of the textual information. This categorization is carried out by the automatic identification of discourse markers in texts. We defend here the use of discourse methods in automatic summarization. Two evaluations of the summarization strategy are presented. The summaries produced by our strategy are evaluated with summaries produced by humans and other applications. These two evaluations display well the capacity of our application, based on EXCOM, to produce summaries comparable to the summaries of other applications.

  • PDF

Improving Abstractive Summarization by Training Masked Out-of-Vocabulary Words

  • Lee, Tae-Seok;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.344-358
    • /
    • 2022
  • Text summarization is the task of producing a shorter version of a long document while accurately preserving the main contents of the original text. Abstractive summarization generates novel words and phrases using a language generation method through text transformation and prior-embedded word information. However, newly coined words or out-of-vocabulary words decrease the performance of automatic summarization because they are not pre-trained in the machine learning process. In this study, we demonstrated an improvement in summarization quality through the contextualized embedding of BERT with out-of-vocabulary masking. In addition, explicitly providing precise pointing and an optional copy instruction along with BERT embedding, we achieved an increased accuracy than the baseline model. The recall-based word-generation metric ROUGE-1 score was 55.11 and the word-order-based ROUGE-L score was 39.65.

KI-HABS: Key Information Guided Hierarchical Abstractive Summarization

  • Zhang, Mengli;Zhou, Gang;Yu, Wanting;Liu, Wenfen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4275-4291
    • /
    • 2021
  • With the unprecedented growth of textual information on the Internet, an efficient automatic summarization system has become an urgent need. Recently, the neural network models based on the encoder-decoder with an attention mechanism have demonstrated powerful capabilities in the sentence summarization task. However, for paragraphs or longer document summarization, these models fail to mine the core information in the input text, which leads to information loss and repetitions. In this paper, we propose an abstractive document summarization method by applying guidance signals of key sentences to the encoder based on the hierarchical encoder-decoder architecture, denoted as KI-HABS. Specifically, we first train an extractor to extract key sentences in the input document by the hierarchical bidirectional GRU. Then, we encode the key sentences to the key information representation in the sentence level. Finally, we adopt key information representation guided selective encoding strategies to filter source information, which establishes a connection between the key sentences and the document. We use the CNN/Daily Mail and Gigaword datasets to evaluate our model. The experimental results demonstrate that our method generates more informative and concise summaries, achieving better performance than the competitive models.

Generic Document Summarization using Coherence of Sentence Cluster and Semantic Feature (문장군집의 응집도와 의미특징을 이용한 포괄적 문서요약)

  • Park, Sun;Lee, Yeonwoo;Shim, Chun Sik;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2607-2613
    • /
    • 2012
  • The results of inherent knowledge based generic summarization are influenced by the composition of sentence in document set. In order to resolve the problem, this papser propses a new generic document summarization which uses clustering of semantic feature of document and coherence of document cluster. The proposed method clusters sentences using semantic feature deriving from NMF(non-negative matrix factorization), which it can classify document topic group because inherent structure of document are well represented by the sentence cluster. In addition, the method can improve the quality of summarization because the importance sentences are extracted by using coherence of sentence cluster and the cluster refinement by re-cluster. The experimental results demonstrate appling the proposed method to generic summarization achieves better performance than generic document summarization methods.