• Title/Summary/Keyword: sulfur solution

Search Result 227, Processing Time 0.032 seconds

Effect of Irrigation of Sulfur Solution before Sowing on Growth and Root Rot Disease of Seedling in Ginseng Nursery (파종전 무기유황 관주처리가 묘삼의 생육 및 뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.391-397
    • /
    • 2014
  • To control the disease of root rot in ginseng nursery, inorganic sulfur solution of 0.1%, 1.0%, and 2.0% were irrigated by amount of $10{\ell}$ per $3.3m^2$ before sowing. On the last ten days of July, Fusarium solani and F. oxysporum were similarly detected by 44.8% and 43.8%, respectively, while Cylindrocarpon destructans was low detected by 4.4% in the diseased seedling. The more sulfur's concentration was increased, the more soil pH was decreased. Soil pH was decreased from 5.87 to 4.59 by the irrigation of sulfur solution of 1.0%. The more sulfur's concentration was increased, the more electrical conductivity (EC) of soil was increased. EC was increased from 0.27 dS/m to 1.28 dS/m by the irrigation of sulfur solution of 1.0%. Irrigation of sulfur solution was effective on the inhibition of damping-off caused by Rhizoctonia solani in ginseng seedling. Control value for damping-off by the irrigation of sulfur solution of 1.0% and 2.0% were 75.7%, and 78.5%, respectively. Growth of leaf was inhibited by the irrigation of sulfur solution of 2.0%. Root weight per $3.3m^2$ showed the peak in sulfur solution of 1.0%, while survived-root ratio and root weight per plant were decreased in the level of 2.0%. Survived-root ratio of seedling in sulfur solution of 1.0% was distinctly increased by 4.7 times compare to the control, but control value for root rot was relatively low as 49.2%. Mycelium growth of C. destructans, F. solani, and R. solani were distinctly inhibited by the increase of sulfur's concentration in vitro culture using PDA medium.

Development of new antibacterial materials for manufacturing functional corrugated board for agricultural products (농산물용 기능성 골판지 제조를 위한 신규 항균재료 개발에 대한 연구)

  • Yoon, Hee-Youl;Oh, Seok-Ju;Lee, Ji-Young;Kim, Byeong-Ho;Lim, Gi-Baek;Choi, Jae-Sung;Kim, Sun-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.34-40
    • /
    • 2012
  • In this study, new antibacterial materials were developed to manufacture a functional corrugated board. Sulfur solution, a new antibacterial solution made from inorganic sulfur in the laboratory, and other antibacterial mat erials were adopted to treat the surface of a linerboard. We measured the antibacteriocidal and bacteriostatic activities, as well as the fungal resistance of the surface-treated linerboards, to identify the antibacterial properties. The mechanical properties of the surface-treated linerboard were also determined in order to identify the effects of the antibacterial materials on linerboard properties. Linerboard treated with sulfur solution, PVOH, and sodium metasulfite showed the highest antibacterial activity, while linerboard treated with sulfur solution and nano sulfur showed the highest fungal resistance. It was identified that sulfur solution has effective antibacterial properties. The antibacterial materials did not affect the mechanical properties of the surface-treated linerboard, but the binder showed significant effects in terms of the burst strength, the compressive strength, and the stiffness of the linerboard.

Application of surface modified sericite to remove anionic dye from an aqueous solution

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • The treatment of dyeing wastewater is not easy because dyes are mainly aromatic, heterocyclic compounds. The most effective technologies and methods to treat dyeing wastewater are costly and involve materials that are difficult to regenerate after use. Therefore, it is necessary to develop cost-effective, eco-friendly technologies to treat dyeing wastewater. The aim of this study was to investigate the removal of sulfur blue 11 (CI 53235) anionic dye using methyl esterified sericite (ME-sericite) adsorbents in an aqueous solution. The results are discussed in terms of the ME-sericite particle size, temperature, pH value and initial sorption rate according to the initial sulfur blue concentration. In addition, we analyzed the adsorption kinetics using a Pseudo-second-order model with the desorption and reusability. The methyl esterification caused a considerable increase in the specific surface area from 4.45 to $17.62m^2/g$. The ME-sericite adsorbents successfully removed > 98% of the sulfur dye in the aqueous solution. For the adsorption of 1 mg of sulfur dye, approximately 4.6 to 6.6 g/L ME-sericite were required. The desorption process was carried out by mixing a NaOH eluent to desorb 90.56% of the sulfur dye with 2 h of contact time. Thus, the ME-sericite is a promising adsorbent to treat dyeing wastewater due to its low dose requirement, high removal efficiency and inexpensive material.

The effects of sulfur passivation on the performance of ITO/InP solar cells (ITO/InP 태양전지 제작에 응용된 sulfur passivation의 효과)

  • 이영철;한교용
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.50-55
    • /
    • 1997
  • In order to improve the electrical performance of ITO/InP solar cells, sulfur passivation technique was employed using (N $H_{4}$)$_{2}$ $S_{x}$ solution. Passivation effects were analyzed by measuring the short circuit current density ( $J_{sc}$ ) of solar cells and photoluminescence (PL) of ITO/InP interfaces. This paper firstly reports the sulfur passivation effects by investigating the correlation between the PL intensity and the short circuit current. Generally, PL intensity and the short circuit current of sulfur passivated sampels wer eincreased, and showed the same trend. Especially, samples prepared at 60.deg. C (N $H_{4}$)$_{2}$ $S_{x}$ solution exhibited the highest $J_{sc}$ and PL intensity. These results demonstrated that the short circuit currents was influenced by the ITO/InP interface states.

  • PDF

Removal of sulfur element from high-sulfur coal by superconducting HGMS technology

  • Han, Shuai-shuai;Li, Su-qin;Yang, Rui-ming;Yang, Chang-qiao;Xing, Yi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.26-30
    • /
    • 2019
  • Coal is the most abundant fossil fuel on Earth and is used in a wide range of applications. The direct combustion of high-sulfur coal produces a large amount of sulfur dioxide, which is a toxic and corrosive gas. A new superconducting high gradient magnetic separation (HGMS) technology was studied to remove sulfur from high sulfur coal. The magnetic separation concentrate was obtained under the optimum parameters, such as a particle size of -200 mesh, a magnetic field strength of 2.0 T, a slurry concentration of 15 g/L, and a slurry flow rate of 600 ml/min. The removal rate of sulfur is up to 59.9%. The method uses a magnetic field to remove sulfur-containing magnetic material from a pulverized coal solution. It is simple process with, high efficiency, and is a new way.

Studies on X-Ray Fluorescence Analysis of Sulfide Ores by Solution Technique (I). Analysis of Sulfur (용액법을 이용한 황화광석의 X-선 형광분석에 관한 연구 (제1보). 황의 분석)

  • Young-Sang Kim;Kee-Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.229-234
    • /
    • 1982
  • Using solution technique, sulfur in the sulfide ore was indirectly determined by X-ray fluorescence spectrometry. The sample was dissolved with the mixed solution of B$r_2$ and HN$O_3$, and Si$O_2$, a major constituent, was repelled from the solution by HF treatment several times, B$a^{2+}$ solution was added to the solution to precipitate the S$O^4_{2-}$ ion as BaS$O_4$. Measuring the fluorescent X-ray intensity of excess Ba2+ ion in the filtrate, the content of sulfur in the original ore was back-calculated. Comparing the results by this method with the gravimetric method, the mean difference was ${\pm}1.7%$ in the range of 20 to 40% of sulfur content and the method was tolerably reproducible.

  • PDF

Effects of different sulfur ion concentration in nutrient solution and light source on glucosinolate contents in kale sprouts (Brassica oleracea var. acephala)

  • Park, Ye-Jin;Chun, Jin-Hyuk;Woo, Hyunnyung;Maruyama-Nakashita, Akiko;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.261-271
    • /
    • 2017
  • The aim of this study was to investigate the amount of glucosinolates (GSLs) in kale sprouts (Brassica oleracea L. var. acephala) ('TBC') according to different concentrations of sulfur ions in sprout's nutrient solutions (0.0, 0.5, 1.0, and 2.0 mM) and to different light sources [Fluorescent lamp, Red, Blue, and Mix (R+B) LED]. Kale sprouts were cultivated in a growth chamber for 13 days in sulfur solutions. Kale sprouts were treated with fluorescent lamp and LED light sources for 5 days, from eight days after sowing to harvest. Amount of seven types of GSLs (progoitrin, sinigrin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin) were measured in kale sprouts after harvest. The total GSL content was influenced by different sulfur solution concentration, and it was the highest at S 0.5 mM ($172.54{\mu}mol{\cdot}g^{-1}DW$) and the lowest at S 2.0 mM ($163.09{\mu}mol{\cdot}g^{-1}DW$). The GSL content was influenced by different light source, and it was the highest with Red LED ($159.23{\mu}mol{\cdot}g^{-1}DW$) and the lowest with Blue LED ($147.57{\mu}mol{\cdot}g^{-1}DW$). As the sulfur solution concentration increased under all light source, progoitrin and sinigrin contents tended to decrease while glucobrassicin content showed an upward tendency for all of the light sources. The content of glucobrassicin was higher than that of progitrin when treated with sulfur solutions for all LED light sources. Sinigrin, which has excellent anti-cancer effects, showed the highest rate (92.2%) among all the GSLs, under all of the light sources.

Spermatogenic Effect of Sulfur and Methyl Sulfonyl Methane in Rats

  • Lee, Young-Lae;Park, Jeong-Sook;Hwang, Seock-Yeon;Han, Kun
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.204-210
    • /
    • 2012
  • Sulfur has been used as a general physical strengthening agent from ancient times in Asia. On the basis of this point, we measured spermatogenic effect of sulfur and methyl sulfonyl methane (MSM) which is used a functional food for arthritis in rats. MSM, a kind of organic sulfur, is used as an alternative of sulfur by some people. Sulfur was administered as a dietary supplement and MSM was administered orally as a solution to 7 week old rat for 6 weeks. All sulfur administered groups showed a significant dose dependent increase in the number of sperm in the testes compared with the control group. Moreover, a histological examination showed an apparent increase in the number of seminiferous tubular cell layers in the testes of the sulfur treated rats. However, there were no observed any increase of sperm in MSM dosing group. In sulfur treated rats, the weights of body, liver, spleen, kidney, testes and epididymides didn't show significantly differences compared with the control. Histopathological examination was not revealed any morphological change in the liver, spleen and kidney. Thus, sulfur may be effectively used to treat sperm deficiency of men, but not MSM.

Effect of Steeping Conditions of Corn on Starch Properties (옥수수의 침지조건이 전분의 성질에 미치는 영향)

  • Lee, Eun-Sook;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.99-104
    • /
    • 1990
  • The effects of concentrations of sulfur dioxide (0.16-0.20%) and steeping times (25-50hr) at $52^{\circ}C$ on the changes in pH of steep water and weight and volume of corn and starch properties were investigated. The pH of steep water increased and remained constant after steeping time of 20 hours. The degree of weight or volume gain decreased as the concentration of sulfur dioxide increased. The protein content of starch increased as the concentration of sulfur dioxide increased. Water·binding capacity of starch showed the highest value at the steeping time of 35 hours. Swell ins power and solubility decreased as cocentration of sulfur dioxide and steeping time increased. The initial pasting temperature and peak viscosity were increased and decreased, respectively, as the concentration of sulfur dioxide increased. At the same concentration of sulfur dioxide, the peak viscosity was increased and then decreased. Viscosity of starch in sodium hydroxide solution tended to decrease as the concentration of sulfur dioxide and sleeping time increased. The gel volume of starch in 3M KSCN solution was not affected by concentration of sulfur dioxide and steeping time.

  • PDF

Formation and Behavior of Sedimentary Inorganic Sulfides in Banweol Intertidal Flat, Kyoung-gi Bay, West Coast of Korea (황해 경기만 반월조간대 퇴적물 내의 황화물 형성과 행동에 관한 연구)

  • 김범수;이창복
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.229-240
    • /
    • 1993
  • This study investigated the behaviour of sulfur species after the early diegenetic reduction of sulfate from pore solution in an anoxic intertidal flat deposit in the Banweol area of Kyeong-gi Bay, west coast of Korea. A total of seven sediment cores were collected during 1990∼1992 and were analyzed for their solid-phase sulfur species (acid-volatile sulfur, element sulfur, pyrite sulfur) as well as for chemical components in the pore solution, such as sulfate, ammonium, hydrogen sulfide, phosphate and Fe ion. The pore water sulfate oncentration was found to decrease rapidly downward from the sediment surface, while that of hydrogen sulfide, ammonium and phosphate showed and increase. The dissolved iron concentration in pore water, on the other hand, was found high in the surface layer of sediment, but fell sharply below this layer. these characteristic profiles of pore water sulfide and iron concentrations suggest that some reaction occurs between dissolved iron and sulfide ions, leading to the formation of various sulfide minerals in the sedimentary phase. The amount of inorganic sulfur species in the sediment increased downward, and showed a maximum of up to 7.9 mg/g. among the three species analyzed, acid-volatile sulfur (AVS) was dominant comprising more than 50% of the total. The amount of pyrite sulfur was greater than that of element sulfur. This implies that the formation of pyrite was restricted in this environment. the limited amount of element sulfur in this deposit may have discouraged the active formation of pyrite.

  • PDF