DOI QR코드

DOI QR Code

Removal of sulfur element from high-sulfur coal by superconducting HGMS technology

  • Received : 2019.03.13
  • Accepted : 2019.04.19
  • Published : 2019.06.30

Abstract

Coal is the most abundant fossil fuel on Earth and is used in a wide range of applications. The direct combustion of high-sulfur coal produces a large amount of sulfur dioxide, which is a toxic and corrosive gas. A new superconducting high gradient magnetic separation (HGMS) technology was studied to remove sulfur from high sulfur coal. The magnetic separation concentrate was obtained under the optimum parameters, such as a particle size of -200 mesh, a magnetic field strength of 2.0 T, a slurry concentration of 15 g/L, and a slurry flow rate of 600 ml/min. The removal rate of sulfur is up to 59.9%. The method uses a magnetic field to remove sulfur-containing magnetic material from a pulverized coal solution. It is simple process with, high efficiency, and is a new way.

Keywords

CJJOCB_2019_v21n2_26_f0001.png 이미지

Fig. 1. Compositions and microstructure of coal.

CJJOCB_2019_v21n2_26_f0002.png 이미지

Fig. 2. Structure diagram of separating device for dynamic processing.

CJJOCB_2019_v21n2_26_f0003.png 이미지

Fig. 3. The effect of magnetic induction on separation efficiency

CJJOCB_2019_v21n2_26_f0004.png 이미지

Fig. 4. The effect of particle size on separation efficiency

CJJOCB_2019_v21n2_26_f0005.png 이미지

Fig. 5. The effect of slurry flow rate on separation efficiency

CJJOCB_2019_v21n2_26_f0006.png 이미지

Fig. 6. The effect of slurry concentration on separation efficiency

TABLE 1 CHEMICAL COMPOSITION OF COAL FROM JINCHENG.

CJJOCB_2019_v21n2_26_t0001.png 이미지

TABLE 2 CHEMICAL COMPOSITION OF COAL FROM DATONG.

CJJOCB_2019_v21n2_26_t0002.png 이미지

TABLE 3 THE MAIN PARAMETERS OF MAGNET.

CJJOCB_2019_v21n2_26_t0003.png 이미지

References

  1. D. W. Jiao, T. X. Hu, H. X. Jin, Z. Wang and Y. Zhang, Chinese Journal of Energy and Environment, vol. 4, pp. 55-58, 2010.
  2. Byungjoon Park, Hyunsoo Cheon, Changeon Kang, et al., IEEE Trans. Appl. Supercond., vol. 7, pp. 239-241, 2008. https://doi.org/10.1109/77.614476
  3. L. N. He, Chinese Journal of Low Temperature and Superconductivity, vol. 12, pp. 55-58, 2014.
  4. S. Q. Li, M. F. Wang, Q. Wang and Z. A. Zhu, Sep. Purif. Technol., vol. 84, pp. 56-62, 2012. https://doi.org/10.1016/j.seppur.2011.09.034
  5. P. C. Rout and K. Sarangi, Sep. Purif. Technol., vol. 122, pp. 270-277, 2014. https://doi.org/10.1016/j.seppur.2013.11.010
  6. B. Zhang, G. U. Zhu, B. Lv, L. Dong, G. H. Yan, X. N. Zhu and Z. F. Luo, Journal of Cleaner Production, vol. 202, pp. 697-709, 2018. https://doi.org/10.1016/j.jclepro.2018.08.088
  7. P. Y. Li, G. T. Gui, Y. T. Zhang, Z. L. Wang and Y. Q. Li, Chinese Journal of Ceramics, vol. 4, pp. 45-48, 2016.
  8. F. P. Ning, M. F. Wang, H. Yang, G. Q. Zhang, W. B. Ma, Z. Y. Liu, X. J. Du, W. Z. Yao and Z. Zhu, IEEE Trans. Appl. Supercond., vol. 3, pp. 1210-1213, 2012.
  9. S. He, C. Q. Yang, S. Q. Li and Z. Q. Zhang, Progress in Superconductivity and Cryogenics, vol. 1, pp. 17-21, 2017.
  10. C. Q. Yang, S. Q. Li, C. Q. Zhang, J. X. Bai and Z. J. Guo, Mineral Processing and Extractive Metallurgy Review, vol. 39(1), pp. 44-49, 2018. https://doi.org/10.1080/08827508.2017.1324439
  11. R. Subrata, Mineral Processing and Extractive Metallurgy Review, vol. 33, pp. 170-179, 2012. https://doi.org/10.1080/08827508.2011.562948
  12. F. Mishima, S. Takeda, M. Fukushima and S. Nishijima, Physics C: Superconductivity and its Applications, vol. 463, pp. 1302-1305, 2007.