• Title/Summary/Keyword: sulfur oxidation

Search Result 229, Processing Time 0.027 seconds

An Experimental Study on Emission Reduction by Low Sulfur Diesel Fuel in Diesel Oxidation Catalyst of Heavy Duty Diesel Engine (대형디젤기관의 디젤산화촉매장치에서 저유황 경유에 의한 배출가스 저감에 관한 실험적 연구)

  • 요용석;강호인;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 1998
  • Among aftertreatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects of low sulfur diesel fuel in heavy duty diesel engine equipped with DOC. We tested to estimate change of engine performance for the low and high sulfur diesel fuels in a 11,000cc diesel engine equipped with DOC. We conducted test to estimate the reduction efficiency of exhaust gas in D-13 mode of heavy duty diesel regulation mode and in smoke opacity mode for two samples of high sulfur content (0.2%) and low sulfur content(0.05%)

  • PDF

EMISSION CHARACTERISTICS IN ULTRA LOW SULFUR DIESEL

  • Oh, S.-K.;Baik, D.-S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Automobile industry has been developed rapidly as a key manufacturing industry in Korea. Meanwhile, air pollution is getting worse noticeably than ever. In the diesel emission, PM (Particulate Matter) and NOx (Nitrogen Oxides) have been exhausted with a great amount and the corresponding emission regulations are getting stringent. In order to develop low emission engines, it is necessary to research on better qualified fuels. Sulfur contained in fuel is transformed to sulfur compound by DOC (Diesel Oxidation Catalyst) and then it causes to the increase of sulfate-laden PM on the surface of catalyst. In this research, ULSD (Ultra Low Sulfur Diesel) is used as a fuel and some experimental results are investigated. ULSD can reduce not only PM but also gas materials because cetane value, flash point, distillation 90%, pour point and viscosity are improved in the process of desulfurization. However, excessively reduced sulfur may cause to decease lubricity of fuel and engine performance in fuel injection system. Therefore, it requires only modest adjusted amount of sulfur can improve engine performance and DOC, as well as decrease of emission.

N,N'-Dimethylethylenediamine-N,N'-di-α-butyric Acid Cobalt(III) Complexes Utilizing Oxidation of Sulfur of S-Methyl-L-cysteine

  • Kim, Hyun-Jin;Youm, Kyoung-Tae;Yang, Jung-Sung;Jun, Moo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.851-856
    • /
    • 2002
  • The Reaction of S-methyl-S-cysteine(L-Smc) with racemic $s-cis-[Co(demba)Cl_2]-1$ (Hydmedba = $NN'-dimethylethylenediamine-NN'-di-\alpha-butyric$, acid) yields ${\Delta}$-s-cis-[Co(dmedba)(L-Smc)] 2 with N, O-chelation. Oxidation of sulfur of 2 with $H_2O_2$ in a 1 : 1 mole ratio gives ${\Delta}$-s-cis[Co(dmedba)(L-S(O)mc)] 3 having an uncoordinated sulfenate group. Oxidation of sulfur of L-Sm with $H_2O_2in$ a 1: 1 mole ratio produces S-methyl-L-cysteinesulfenate (L-S(O)me) 5. Direct reaction of 1 with 5 in basic medium gives an N.O-chelated ${\Delta}$s-cis[Co(dmedba)(L-S(O)mc)-N.O], which turmed out be same as obtained by oxidation of 2, while an N, S-chelated ${\Delta}$-s-cis-[Co(dmedba)(S-S(O)mc)-N,O] complex 4 is obtained in acidic medium from the reaction of 1 with 5. This is one of the rare $[$Co^{III}$(N_2O_2-type$ ligand)(amino acid)] type complex preparations, where the reaction conditions determine which mode of N, O and N, S caelation modes is favored.

Characterization of Methane Oxidation by a Methanotroph Isolated from a Landfill Cover Soil, South Korea

  • Lee, Eun-Hee;Yi, Tae-Woo;Moon, Kyung-Eun;Park, Hyun-Jung;Ryu, Hee-Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.753-756
    • /
    • 2011
  • A methane-oxidizing bacterium was isolated from the enriched culture of a landfill cover soil. The closest relative of the isolate, designated M6, is Methylocystis sp. Based on a kinetic analysis, the maximum specific methane oxidation rate and saturation constant were 4.93 mmol gdry cell $weight^{-1}{\cdot}h^{-1}$ and 23${\mu}M$, respectively. This was the first time a kinetic analysis was performed using pure methanotrophic culture. The methane oxidation by M6 was investigated in the presence of aromatic (m- and pxylene and ethylbenzene) or sulfur (hydrogen sulfide, dimethyl sulfide, methanthiol) compounds. The methane oxidation was inhibited by the presence of aromatic or sulfur compounds.

Effect of H2S on Reactivity of Oxygen Carrier Particle for Chemical Looping Combustion (매체순환연소용 산소전달입자의 반응성에 미치는 H2S의 영향)

  • KIM, HANA;MOON, JONG-HO;JIN, GYOUNG-TAE;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.412-420
    • /
    • 2016
  • Effect of $H_2S$ on reactivity of oxygen carrier was measured and discussed using fluidized bed reactor and SDN70 oxygen carrier. We could get 100% of fuel conversion and $CO_2$ selectivity even though $H_2S$ containing simulated syngas was used as fuel for reduction. Absorbed sulfur was released during oxidation and $N_2$ purge step after oxidation as $SO_2$ form. We could get 100% of fuel conversion and $CO_2$ selectivity during cyclic reduction-oxidation tests up to 10th cycle. However, only 6~7% of sulfur can be removed during oxidation and $N_2$ purge step and 93~94% of sulfur was accumulated in the oxygen carrier. Therefore we could conclude that total removal of sulfur was not possible. $SO_2$ emission during oxidation decreased as the number of cycle increased. Therefore we could expect that the reactivity of oxygen carrier will be decreased with time.

Study on the Oxidation Process of Potential Acid Sulfate Soil (잠재 산성황산염토양의 산화과정에 대한 연구)

  • Han, Kang-Wan;Chun, Jae-Chul;Cho, Jae-Young;Kim, Geum-Hee;Ann, Yeoul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.243-248
    • /
    • 1996
  • To find out the oxidation process of potential acid sulfate soil(PASS) along with time. the PASS were treated with lime and ammonia water to adjust soil pH in laboratory column condition. pH range of PASS showed 6.5 to 7.5. however, complete oxidized PASS by $H_2O_2$ showed 2.1 to 2.5. After pilling the PASS under the natural condition. oxidation occured slowly from surface of the pilled soil. The oxidation of PASS proceeded slowly when the soil was in submerged condition. but quickly in dried condition. The content of sulfide-sulfur in PASS sharply decreased after exposing to the air and the decreasing rate was greater in dried than in submerged condition. The content of sulfate-sulfur continuously decreased in submerged condition. but increased in dried condition. Contents of $Fe^{+{+}}$ and $Al^{+{+}}$ in PASS were generally increased with time and the increasing rate was greater in submerged than in dried condition. Liming to PASS was slowly acting to pH change and ammonia water caused fast pH change within a short period of time. The contents of sulfate-sulfur and exchangeable aluminum in drainage water decreased with time and the contents of sulfide-sulfur and ferrous iron were increased.

  • PDF

A Experimental Study on Exhaust Gas Reduction by Pt Loading in Oxidation Catalyst of Diesel Engine (디젤기관의 산화촉매에서 Pt 로딩량에 따른 배출가스 저감에 관한 실험적 연구)

  • 오용석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.13-18
    • /
    • 1999
  • Recently among after-treatment devices which have high possibility of utility diesel oxidation catalyst(DOC) is concerned over the world. DOC oxidizes pollutants by means of activate-reaction during by-passing in the catalyst in doing so conversion efficiency of PM, CO and HC is high and this device does not have an effect on engine performance because back pressure is not nearly increased, But as a small amount of sulfur content in fuel is oxidized it makes sulfate which is absorbed on the surface of catalyst. So in this study the experiment is carried out by means of using ordinary fuel(0.1wt%) and low sulfur fuel(0.05wt%) with DOC and the emission gas of diesel engine is measured.

  • PDF

김해평야에 분포한 특이산성토 중 유황의 형태별 분포 및 Jarosite의 특성

  • 정필균;장용선;신제성;류순호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 1997
  • Acid sulfate soils occur in the Gimhae plain where they have been formed from brackish alluvial sediments along the sea coast and river estuary. Acid sulfate soils suffer extremely acidity as a result of oxidation of pyrite. Total sulfur content of the soils was the highest in B horizon of Gimhae series and the lowest in A horizon of Deunggu series. The dominant fractions of sulfur in the soils were jarosite-S for Gimhae series, pyrite-S for Bongrim and Haecheog series, and organic-S for Deunggu series. The essential chemical processes of acid sulfate soils are, firstly, the formation of pyrite in waterlogged environment, and subsequently, the oxidation of this pyrite following natural or artificial drainage. Jarosite [K Fe3(SO4)2(OH)6] is a common sulfur mineral of the oxidation condition. Jarosite shows cubic particles with tetrahedral faces.

  • PDF

Mechanical and Oxidation Properties of Cold-Rolled Zr-Nb-O-S Alloys

  • Lee, Jong-Min;Nathanael, A.J.;Shin, Pyung-Woo;Hong, Sun-Ig;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • The stress-strain responses and oxidation properties of cold-rolled Zr-1.5Nb-O and Zr-1.5Nb-O-S alloys were studied. The U.T.S. (ultimate tensile strength) of cold-rolled Zr-1.5Nb-O-S alloy with 160 ppm sulfur (765 MPa) were greater than that of Zr-1Nb-1Sn-0.1Fe alloy (750 MPa), achieving an excellent mechanical strength even after the elimination of Sn, an effective solution strengthening element. The addition of sulfur increased the strength at the expense of ductility. However, the ductile fracture behavior was observed both in Zr-Nb-O and Zr-Nb-O-S alloys. The beneficial effect of sulphur on the strengthening was observed in the cold rolled Zr-1.5Nb-O-S alloys. The activation volume of cold-rolled Zr-1.5Nb decreased with sulfur content in the temperature region of dynamic strain aging associated with oxygen atoms. Insensitivity of the activation volume to the dislocation density and the decrease of the activation volume at a higher temperature where the dynamic strain aging occurs support the suggestion linking the activation volume with the activated bulge of dislocations limited by segregation of oxygen and sulfur atoms. The addition of sulfur was also found to improve the oxidation resistance of Zr-Nb-O alloys.