Browse > Article
http://dx.doi.org/10.4014/jmb.1102.01055

Characterization of Methane Oxidation by a Methanotroph Isolated from a Landfill Cover Soil, South Korea  

Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University)
Yi, Tae-Woo (Department of Environmental Science and Engineering, Ewha Womans University)
Moon, Kyung-Eun (Department of Environmental Science and Engineering, Ewha Womans University)
Park, Hyun-Jung (Department of Environmental Science and Engineering, Ewha Womans University)
Ryu, Hee-Wook (Department of Chemical Engineering, Soongsil University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 753-756 More about this Journal
Abstract
A methane-oxidizing bacterium was isolated from the enriched culture of a landfill cover soil. The closest relative of the isolate, designated M6, is Methylocystis sp. Based on a kinetic analysis, the maximum specific methane oxidation rate and saturation constant were 4.93 mmol gdry cell $weight^{-1}{\cdot}h^{-1}$ and 23${\mu}M$, respectively. This was the first time a kinetic analysis was performed using pure methanotrophic culture. The methane oxidation by M6 was investigated in the presence of aromatic (m- and pxylene and ethylbenzene) or sulfur (hydrogen sulfide, dimethyl sulfide, methanthiol) compounds. The methane oxidation was inhibited by the presence of aromatic or sulfur compounds.
Keywords
Methylocystis sp.; methane oxidation; aromatic compound; sulfur compounds;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Smet, E. and H. van Langenhove. 1998. Abatement of volatile organic sulfur compounds in odorous emissions from the bioindustry. Biodegradation 9: 273-284.   DOI   ScienceOn
2 Spokas, K. A. and J. E. Bogner. 2010. Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag. 31: 823-832.
3 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Anaysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
4 Trotsenko, Y. A. and J. C. Murrell. 2008. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63: 183- 229.
5 Zou, S. C., S. C. Lee, C. Y. Chan, K. F. Ho, X. M. Wang, L. Y. Chan, and Z. X. Zhang. 2003. Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China. Chemosphere 51: 1015-1022.   DOI   ScienceOn
6 Juliette, L. Y., M. R. Hyman, and D. J. Arp. 1993. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: Thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl. Environ. Microbiol. 59: 3718-3727.
7 Kjeldsen, P. 1996. Landfill gas migration in soil, p. 114. In T. H. Christensen, R. Cossu, and R. Stegmann (eds.). Landfilling of Waste: Biogas. E & FN Spon, London.
8 Kumaresan, D., G. C. J. Abell, L. Bodrossy, N. Stralis-Pavese, and J. C. Murrell. 2009. Spatial and temporal diversity of methanotrophs in a landfill cover soil are differentially related to soil abiotic factors. Environ. Microbiol. Rep. 1: 398-407.   DOI
9 Lee, E. H., H. Park, and K. S. Cho. 2010. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazard. Mater. 184: 313- 320.   DOI
10 Op den Camp, H. J. M., T. Islam, M. B. Stott, H. R. Harhangi, A. Hynes, S. Schouten, et al. 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1: 293-306.   DOI
11 Saari, A. and P. J. Martikainen. 2003. Dimethyl sulphoxide (DMSO) and dimethyl sulphide (DMS) as inhibitors of methane oxidation in forest soil. Soil Biol. Biochem. 35: 383-389.   DOI   ScienceOn
12 Scheutz, C., P. Kjeldsen, J. E. Bogner, A. De Visscher, J. Gebert, H. A. Hilger, M. Huber-Humer, and K. Spokas. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455.   DOI   ScienceOn
13 Scheutz, C., H. Mosbæk, and P. Kjeldsen. 2004. Attenuation of methane and volatile organic compounds in landfill soil covers. J. Environ. Qual. 33: 61-71.   DOI
14 Fitch, M. W., G. E. Speitel, and G. Georgiou. 1996. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl. Environ. Microbiol. 62: 1124-1128.
15 Gebert, J., N. Stralis-Pavese, M. Alawi, and L. Bodrossy. 2008. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol. 10: 1175-1188.   DOI   ScienceOn
16 Jackel, U., S. Schnell, and R. Conrad. 2004. Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil. Soil Biol. Biochem. 36: 835-840.   DOI   ScienceOn
17 Han, B., T. Su, X. Li, and X. Xing. 2008. Research progresses of methanotrophs and methane monooxygenases. Chin. J. Biotechnol. 24: 1511-1519.
18 He, R., A. Ruan, C. Jiang, and D. S. Shen. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol. 99: 7192-7199.   DOI   ScienceOn
19 Holmes, A. J., A. Costello, M. E. Lidstrom, and J. C. Murrell. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208.   DOI   ScienceOn
20 Ait-Benichou, S., L. B. Jugnia, C. W. Greer, and A. R. Cabral. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. 29: 2509-2517.   DOI   ScienceOn
21 Albanna, M., M. Warith, and L. Fernandes. 2010. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers. Waste Manag. 30: 219-227.   DOI   ScienceOn
22 Borjesson, S. 2001. Inhibition of methane oxidation by volatile sulfur compounds (CH3SH and CS2) in landfill cover soils. Waste Manag. Res. 19: 314-319.   DOI   ScienceOn
23 Bowman, J. P., S. M. Rea, S. A. McCammon, and T. A. McMeekin. 2000. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ. Microbiol. 2: 227-237.   DOI   ScienceOn
24 Brosseau, J. and M. Heitz. 1994. Trace gas compound emissions from municipal landfill sanitary sites. Atmos. Environ. 28: 285-293.   DOI   ScienceOn