• 제목/요약/키워드: sulfur gas

검색결과 569건 처리시간 0.029초

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant

  • Lee, Gi Na;Choi, So Young;Na, Jonguk;Youn, HaJin;Jang, Yu-Sin
    • KSBB Journal
    • /
    • 제29권6호
    • /
    • pp.399-404
    • /
    • 2014
  • Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.

원소-도핑 광촉매를 활용한 저농도 황화 이메틸 및 이황화 이메틸의 제어 (Control of Low-Level Dimethyl Sulfide and Dimethyl Disulfide by Applying Element-Doped Photocatalysts)

  • 신명희;조완근
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1215-1224
    • /
    • 2009
  • This study evaluated the applicability of visible-light-driven N- and S-doped titanium dioxide($TiO_2$) for the control of low-level dimethyl sulfide(DMS) and dimethyl disulfide(DMDS). In addition, a photocatalytic unit(PU)-adsorption hybrid was evaluated in order to examine the removal of DMS and DMDS which exited the PU and a gaseous photocatalytic byproduct($SO_2$) which was generated during the photocatalytic processes. Fourier-Tranform-Infrared(FTIR) spectrum exhibited different surface characteristics among the three-types of catalysts. For the N- and S-doped $TiO_2$ powders, a shift of the absorbance spectrum towards the visible-light region was observed. The absorption edge for both the N- and S-doped $TiO_2$ was shifted to $\lambda$ 720 nm. The N-doped $TiO_2$ was superior to the S-doped $TiO_2$ in regards to DMS degradation. Under low input concentration(IC) conditions(0.039 and 0.027 ppm for DMS and DMDS, respectively), the N-doped $TiO_2$ revealed a high DMS removal efficiency(above 95%), but a gradual decreasing removal efficiency under high IC conditions(7.8 and 5.4 ppm for DMS and DMDS, respectively). Although the hybrid system exhibited a superior characteristic to PU alone regarding the removal efficiencies of both DMS and DMDS, this capability decreased during the course of a photocatalytic process under the high IC conditions. The present study identified the generation of sulfate ion on the catalyst surface and sulfur dioxide(maximum concentrations of 0.0019 and 0.0074 ppm for the photocatalytic processes of DMS and DMDS, respectively) in effluent gas of PU. However, this generation of $TiO_2$ would be an insignificant addition to indoor air quality levels.

백금 담지 촉매상에서 에탄올의 저온연소 (Low-Temperature Combustion of Ethanol over Supported Platinum Catalysts)

  • 김문현
    • 한국환경과학회지
    • /
    • 제26권1호
    • /
    • pp.67-78
    • /
    • 2017
  • Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of $H_2-N_2O$ titration on the supported Pt catalysts with no calcination indicate a metal dispersion of $0.97{\pm}0.1$, corresponding to ca. 1.2 nm, while the calcination of 0.65% $Pt/SiO_2$ at 600 and $900^{\circ}C$ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using $Pt/TiO_2$ and $Pt/SiO_2$ catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to $200^{\circ}C$, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at $80{\sim}200^{\circ}C$ between samples of 0.65% $Pt/SiO_2$ consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of $CO_2$, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% $Pt/SiO_2$ catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at $120^{\circ}C$ even for 12 h, regardless of the space velocity allowed.

sII $SF_6+H_2$ 하이드레이트의 분자 거동 (Molecular Behavior of $SF_6+H_2$ Structure II Hydrates)

  • 박다혜;이보람;사정훈;;이건홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.122.2-122.2
    • /
    • 2011
  • Sulfur hexafluoride ($SF_6$), one of the most potent greenhouse gases, is known as a hydrate former and has been studied at the high pressure up to 1.3 GPa with gas mixtures and with aqueous surfactant. Since we regard $SF_6$ as a potential promoter molecule that can stabilize hydrate structure more effectively compare to the other promoters, further investigation is required to verify the stabilizing ability of $SF_6$ in the hydrate structure. However, the insoluble nature of $SF_6$ in water or gases hinders fine scale analyses. This work discusses the data obtained by using molecular dynamics simulations of structure II (sII) clathrate hydrates containing $SF_6$ and $H_2$. The simulations were performed using the TIP4P/Ice model for water molecule and a previously reported $SF_6$ molecular model (optimized at the pure $SF_6$ single phase system (Olivet and Vega, 2007)), and a $H_2$ molecular model (adapted from the THF+$H_2$ hydrate system (Alavi et al., 2006)). The simulations are performed to observe the stability of $SF_6$ and $H_2$ in the sII clathrate hydrate system with varying temperature and pressure conditions and occupancies of $SF_6$ and $H_2$, which cannot be easily tuned experimentally. We observe that stability of H2 enclathrated in the hydrate structure more affected by the occupancy of $SF_6$ molecules and temperature than pressure, which ranges from 1 to 100 bar.

  • PDF

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

한국전통간장의 맛과 향에 관여하는 주요 향미인자의 분석(III) -향기성분 분석 - (Analysis of Significant Factors in the Flayer of Traditional Korean Soy Sauce (III) - Aroma Compound Analysis -)

  • 박현경;손경희;박옥진
    • 한국식생활문화학회지
    • /
    • 제12권2호
    • /
    • pp.173-182
    • /
    • 1997
  • This study was carried out in order to investigate effective aroma components of Korean traditional soy sauce. Volatile aroma compounds were extracted by solvent extraction, TMS esterification of methyl acetate extracts and SDE, and analyzed by GC/MSD. 140 voltile aroma compounds were detected by three different extraction methods. Most abundant volatile compounds were acids and phenols and identified aldehydes, hydrocarbons, ketones, furans, furanone, alcohols, esters, nitrogen compounds, sulfur compounds and thiazoles, too. In the analytical sensory evaluation of soy sauce aroma, there were significant differences between each soy sauce sample in all test item. To sum up, Sweet odor was high in Kyupjang. Nutty odor and traditional soy sauce odor were similarly high in Kyupjang and high concentration soy sauce. Kyupjang had high score in overall odor preference than Chungiangs. The result of multiple regression of soy sauce odor characteristics and gas chromatography pattern demonstrated that offensive and sour odor was affected by octadecanoic acid. Contributive compounds to sweet odor were 1,2-benzenedicarboxylic acid and 3,6-dioxa-2,7-disilacotane. Benzoic acid 4-methyl ethyl ester and nonacotane were identified as major compounds of nutty odor. Contribu live variables of traditional soy sauce odor were benzoic acid 4-methyl ethyl ester and 9,12-octadecadienoic acid. The main factors of odor preference were 3-methyl pentanoic acid, acetic acid, 2,6-dimethyl heptadecane and 3,6-dioxa-2,7-disilacotane.

  • PDF

관형 Pt-라이닝 반응기를 이용한 가압 황산분해반응 (Decomposition of Sulfuric Acid at Pressurized Condition in a Pt-Lined Tubular Reactor)

  • 공경택;김홍곤
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.51-59
    • /
    • 2011
  • Sulfur-Iodine (SI) cycle, which thermochemically splits water to hydrogen and oxygen through three stages of Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition, seems a promising process to produce hydrogen massively. Among them, the decomposition of $H_2SO_4$ ($H_2SO_4=H_2O+SO_2+1/2O_2$) requires high temperature heat over $800^{\circ}C$ such as the heat from concentrated solar energy or a very high temperature gas-cooled nuclear reactor. Because of harsh reaction conditions of high temperature and pressure with extremely corrosive reactants and products, there have been scarce and limited number of data reported on the pressurized $H_2SO_4$ decomposition. This work focuses whether the $H_2SO_4$ decomposition can occur at high pressure in a noble-metal reactor, which possibly resists corrosive acidic chemicals and possesses catalytic activity for the reaction. Decomposition reactions were conducted in a Pt-lined tubular reactor without any other catalytic species at conditions of $800^{\circ}C$ to $900^{\circ}C$ and 0 bar (ambient pressure) to 10 bar with 95 wt% $H_2SO_4$. The Pt-lined reactor was found to endure the corrosive pressurized condition, and its inner surface successfully carried out a catalytic role in decomposing $H_2SO_4$ to $SO_2$ and $O_2$. This preliminary result has proposed the availability of noble metal-lined reactors for the high temperature, high pressure sulfuric acid decomposition.

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제17권4호
    • /
    • pp.154-165
    • /
    • 2018
  • During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.

Biodesulfurization of Dibenzothiophene and Its Derivatives Using Resting and Immobilized Cells of Sphingomonas subarctica T7b

  • Gunam, Ida Bagus Wayan;Yamamura, Kenta;Sujaya, I. Nengah;Antara, Nyoman Semadi;Aryanta, Wayan Redi;Tanaka, Michiko;Tomita, Fusao;Sone, Teruo;Asano, Kozo
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권4호
    • /
    • pp.473-482
    • /
    • 2013
  • The desulfurization ability of Sphingomonas subarctica T7b was evaluated using resting and immobilized cells with dibenzothiophene (DBT), alkyl DBTs, and commercial light gas oil (LGO) as the substrates. The resting cells of S. subarctica T7b degraded 239.2 mg of the initial 250 mg of DBT/l (1.36 mM) within 24 h at $27^{\circ}C$, while 127.5 mg of 2-hydroxybiphenyl (2-HBP)/l (0.75 mM) was formed, representing a 55% conversion of the DBT. The DBT desulfurization activity was significantly affected by the aqueous-to-oil phase ratio. In addition, the resting cells of S. subarctica T7b were able to desulfurize alkyl DBTs with long alkyl chains, although the desulfurization rate decreased with an increase in the total carbon number of the alkylated DBTs. LGO with a total sulfur content of 280 mg/l was desulfurized to 152 mg/l after 24 h of reaction. Cells immobilized by entrapment with polyvinyl alcohol (PVA) exhibited a high DBT desulfurization activity, including repeated use for more than 8 batch cycles without loss of biodesulfurization activity. The stability of the immobilized cells was better than that of the resting cells at different initial pHs, higher temperatures, and for DBT biodesulfurization in successive degradation cycles. The immobilized cells were also easily separated from the oil and water phases, giving this method great potential for oil biodesulfurization.

SULFIDATION PROCESSING AND Cr ADDITION TO IMPROVE OXIDATION RESISTANCE OF Ti-Al INTERMETALLIC COMPOUNDS AT ELEVATED TEMPERATURES

  • Narita, Toshio;Izumi, Takeshi;Yatagai, Mamoru;Yoshioka, Takayuki
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 춘계학술발표회 초록집
    • /
    • pp.5-5
    • /
    • 1999
  • A novel process is proposed to improve oxidation resistance of Ti-Al intermetallic compounds at elevated temperatures by both Cr addition and pre-sulfidation, where TiAl alloys withlor without Cr addition were sulfidized at 1173K for 86.4ks at a 1.3 Pa sulfur partial pressure in a $H_2-H_2S$ gas mixture. The pre-sulfidation treatment formed a thin Cr-Al alloy layer as well as 7~10 micrometer $TiAl_3$ and $TiAl_2$ layer, due to selective sulfidation of Ti. Oxidation resistance of the pre-sulfidation processed TiAl 4Cr alloy was examined under isothermal and heat cycle conditions between room temperature and 1173K in air. Changes in $TiAl_3$ into $TiAl_2$ and then TiAl phases as well as their effect on oxidation behavior were investigated and compared with the oxidation behavior of the TiAl-4Cr alloy as TiAl and pre-sulfidation processed TiAl aHoys. After oxidation for up to 2.7Ms a protective $Al_2O_3$ scale was formed, and the pre-formed $TiAl_3$ changed into $TiAl_2$ and the $Al_2Cr$ phase changed into a CrAlTi phase between the $Al_2O_3$ scale and $TiAl_2$ layer. The pre-sulfidation processed TiAl-4Cr alloy had very good oxidation resistance for longer times, up to 2.7 Ms, in contrast to those observed for the pre-sulfidation processed TiAl alloy where localized oxidation occurred after 81 Oks and both the TiAl and TiAl-4Cr alloys themselves corroded rapidly from the initial stage of oxidation

  • PDF