Browse > Article
http://dx.doi.org/10.5322/JES.2009.18.11.1215

Control of Low-Level Dimethyl Sulfide and Dimethyl Disulfide by Applying Element-Doped Photocatalysts  

Shin, Myeong-Hee (Department of Environmental Engineering, Kyungpook National University)
Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
Publication Information
Journal of Environmental Science International / v.18, no.11, 2009 , pp. 1215-1224 More about this Journal
Abstract
This study evaluated the applicability of visible-light-driven N- and S-doped titanium dioxide($TiO_2$) for the control of low-level dimethyl sulfide(DMS) and dimethyl disulfide(DMDS). In addition, a photocatalytic unit(PU)-adsorption hybrid was evaluated in order to examine the removal of DMS and DMDS which exited the PU and a gaseous photocatalytic byproduct($SO_2$) which was generated during the photocatalytic processes. Fourier-Tranform-Infrared(FTIR) spectrum exhibited different surface characteristics among the three-types of catalysts. For the N- and S-doped $TiO_2$ powders, a shift of the absorbance spectrum towards the visible-light region was observed. The absorption edge for both the N- and S-doped $TiO_2$ was shifted to $\lambda$ 720 nm. The N-doped $TiO_2$ was superior to the S-doped $TiO_2$ in regards to DMS degradation. Under low input concentration(IC) conditions(0.039 and 0.027 ppm for DMS and DMDS, respectively), the N-doped $TiO_2$ revealed a high DMS removal efficiency(above 95%), but a gradual decreasing removal efficiency under high IC conditions(7.8 and 5.4 ppm for DMS and DMDS, respectively). Although the hybrid system exhibited a superior characteristic to PU alone regarding the removal efficiencies of both DMS and DMDS, this capability decreased during the course of a photocatalytic process under the high IC conditions. The present study identified the generation of sulfate ion on the catalyst surface and sulfur dioxide(maximum concentrations of 0.0019 and 0.0074 ppm for the photocatalytic processes of DMS and DMDS, respectively) in effluent gas of PU. However, this generation of $TiO_2$ would be an insignificant addition to indoor air quality levels.
Keywords
N-doping; S-doping; Photocatalytic unit; Hybrid system; Byproduct;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peng T., D. Zhao, K. Dai, W. Shi and K. Hirao, 2005, Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity, J. Phys. Chern. B 109, 4947-4952   DOI   ScienceOn
2 Soler-Illia G. J. A. A., A. Louis and C. Sanchez, 2002, Synthesis and Characterization of mesostructured titania-based materials through evaporation-induced self-assembly, Chern. Mater. 14, 750-759   DOI   ScienceOn
3 Sivakumar S., P. Krishna Pillai, P. Mukundan and K. G. K. Warrier, 2002. Sol-gel synthesis of nanosized anatase from titanyl sulfate, Mater. Lett. 57, 330-335   DOI   ScienceOn
4 Primet M.,P. Pichat and M. V. Mathieu, 1971, Infrared study of the surface of titanium dioxides. I. Hydroxyl groups, J. Phys. Chern. 75, 1216-1220   DOI
5 Li H., J. Li and Y. Huo, 2006, Highly active TiO$_2$_N photocatalysts prepared by treating TiO$_2$ precursors in NH$_3$/ethanol fluid under supercritical conditions, J. Phys. Chern. B 110, 1559-1565   DOI   ScienceOn
6 Canela M. C., R. M. Alberici and W. F. Jardim, 1998, Gas-phase destruction of H$_2$S using TiO$_2$/UV-VIS, J. Photoch. Photobio. A: Chem. 112, 73-80   DOI   ScienceOn
7 Zhao J. and X. Yang, 2003, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ., 38, 645-654   DOI   ScienceOn
8 Thara T., M. Miyoshi, Y. lriyama, O. Matsumoto and S. Sugihara, 2003, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B: Environ., 42, 403-409   DOI   ScienceOn
9 Hirano K., E. Suzuki, A. Ishikawa, T. Moroi, H. Shiroishi and M. Kaneko, 2000, Sensitization of TiO$_2$ particles by dyes to achieve H2 evolution by visible light, J. Photoch. Photobio. A, 136, 157-161   DOI   ScienceOn
10 Li X. Z. and F. B. Li, 2001, Study $^{3+}$-TiO$_2$ photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35, 2381-2387   DOI   ScienceOn
11 Ohno T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, 2004, Preparation of S-enhanced TiO$_2$ photocataIysts and their photocatalytic activities under visible light, Appl. Catal. 265, 115-121   DOI   ScienceOn
12 Asahi R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, 2001, Visible-light photocatalysis in nitrogenenhanced titanium oxides, Science, 293, 269-271   DOI   ScienceOn
13 Jacoby W. A., O. M. Blake, J. A. Fennell, J. E. Boulter, L. M. Vargo and M. C. George, 1996, Heterogeneous photocatalysis for control of volatile organic compounds in indoor air, J. Air Waste Manage. Assoc., 46, 891-898   DOI
14 Nosaka Y., M. Matsushita, J. Nishino and A. Y. Nosaka, 2005, Nitrogen-enhanced titanium dioxide photocatalysts for visible response prepared by using organic compounds, Sci. Technol. Adv. Mat., 6, 143-148   DOI   ScienceOn
15 Obee T. N. and R. T. Brown, 1995, TiO$_2$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene, Environ. Sci. Technol. 29, 1223-1231   DOI   ScienceOn
16 Cheng X., E. Peterkin and G. A. Burlingame, 2005, A study on volatile organic sulfide causes of odors at Philadelphia's Northeast Water Pollution Control Plant, Wat. Res., 39, 3781-3790   DOI   ScienceOn
17 Smet E., P. Lens and H. Van Langenhove, 1998, Treatment of waste gases contaminated with odorous sulfur compounds, Crit. Rev. Environ. Sci. Technol., 28, 89-117   DOI   ScienceOn
18 Mirabelli M. C. and S. Wing, 2006, Proximity to pulp and paper mills and wheezing symptoms among adolescents in North Carolina, Environ. Res., 102, 96-100   DOI   ScienceOn
19 Higashimoto S., W. Tanihata, Y. Nakagawa, M. Azuma, H. Ohue and Y. Sakata, 2008, Effective photocatalytic decomposition of VOC under visible-light irradiation on N-enhanced TiO$_2$ modified by vanadium species, Appl. Catal. A: Gen., 340, 98-104   DOI   ScienceOn
20 Noguchi T., A. Fujishima, P. Sawunytarna and K. Hashimoto, 1998, Photocatalytic degradation of gaseous formaldehyde using TiO$_2$ film, Environ. Sci. Technol. 32, 3831-3833   DOI   ScienceOn
21 Nishikawa H. and Y. Takahara, 2001, Adsorption and photocatalytic decomposition of odor compounds containing sufur using TiO$_2$/SiO$_2$ bead. J. Mole. Catal. A: Chem. 172, 247-251   DOI   ScienceOn
22 Demeestere K., J. Dewulf, B. D. Witte, and H. V. Langenhove, 2005, Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: parameter study and reaction pathways, Appl. Catal. B: Environ., 60, 93-106   DOI   ScienceOn
23 Kataoka S., E. Lee, M. I. Tejedor-Tejedor and M. A. Anderson, 2005, Photocatalytic degradation of hydrogen sulfide and in situ FT-IR analysis of reaction products on surface of TiO$_2$, Appl. Catal. B: Environ. 61, 159-163   DOI   ScienceOn
24 Col$\acute{o}$n G., M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello and J. A. Nav$\acute{l}$o, 2006. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO$_2$ photocatalyst, Appl. Catal. B: Environ. 63, 45-59   DOI   ScienceOn
25 Gonz$\acute{a}$lez-Garc$\acute{l}$a N., J. A. Ayllon, X. Dom$\acute{e}$nech and J. Peral, 2004, TiO$_2$ deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide, Appl. Catal. B: Environ., 52, 69-77   DOI   ScienceOn
26 Rengifo-Herrera J. A., E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi and C. Pulgarin, 2008, Escherichia coli inactivation by N, S co-doped commercial TiO$_2$ powders under UV and visible light, Appl. Catal. B: Environ. 84, 448-456   DOI   ScienceOn
27 Nishijima K., B. Ohtani, X. Yan, T. Kamai, T. Chiyoya, T. Tsubota, N. Murakami and T. Ohno, 2007, Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO$_2$ photocatalysts, Chem. Phys. 339, 64-72   DOI   ScienceOn
28 Vorontsov A. V., E. N. Savinov, C. Lion and P. G. Smimiotis, 2003, TiO$_2$ reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor, Appl. Catal. B: Environ., 44, 25-40   DOI   ScienceOn
29 Guillard C., D. Baldassare, C. Duchamp, M. N. Ghazzal and S. Daniele, 2007, Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor, Catal. Today, 122, 160-167   DOI   ScienceOn
30 Catalan L. J. J., V. Liang, C. Walton and C. Q. Jia, 2007, Effects of process changes on concentrations of individual malodorous sulfur compounds in ambient air near a Kraft pulp plant in Thunder bay, Ontario, Canada, WIT Trans. Ecol. Environ., 101, 437-447
31 Kim K. -H., E. -C. Jeon, Y. -So Koo, M. -So Im and Y. -H. Youn, 2007, An on-line analysis of reduced sulfur gases in the ambient air surrounding a large industrial complex, Atrmos. Environ., 41, 3829-3840   DOI   ScienceOn
32 Wei F., L. Ni and P. Cui, 2008, Preparation and characterization of N-S-codoped TiO$_2$ photocatalyst and its photocatalytic activity, J. Hazard. Mater. 156, 135-140   DOI   ScienceOn