• Title/Summary/Keyword: sulfate reducing conditions

Search Result 54, Processing Time 0.027 seconds

혐기성 슬러지를 첨가한 오염 토양에서 저자 수용체 조건에 따른 디젤 분해 및 미생물 군집 변화

  • 이태호;최선열;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.207-210
    • /
    • 2004
  • Effect of electron accepters on anaerobic degradation of petroleum hydrocarbons by an anaerobic sludge taken from a sludge digestion tank in a soil artificially contaminated with 10,000 mg/kg soil of diesel fuel was tested. Treatments of soil with 30 mL of the digestion sludge (2,000 mg/L of vss (volatile suspended solids)) were incubated under several anaerobic conditions including nitrate reducing, sulfate reducing, methanogenic, and mixed electron accepters conditions for 120 days. Treatments with the digested sludge showed significant degradation of diesel fuel under all anaerobic conditions compare to control treatments with an autoclaved sludge and without the sludge. The amount of TPH degradation after 120days incubation was the largest in the treatment with the sludge and mixed electron accepters (75% removal of TPH) followed in order by sulfate reducing, nitrate reducing, methanegenic condition as 67%, 53%, 43%, respectively. However, the rate of TPH degradation in the nitrate- and sulfate reducing condition within 105 days were comparable with that of the mixed electron accepters condition. Microorganisms in each electron acceptor condition were plated on solid mediums containing nitrate or sulfate as sole electron acceptor and several nitrate- and sulfate reducing bacteria showed effective degradation of diesel fuel within 30 days incubations. These results suggest that anaerobic degradation of diesel fuel in soil with digested sludge is effective for practical remediation of soil contaminated with petroleum hydrocarbons.

  • PDF

Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen Fed Gas-Lift Bioreactor

  • Bijmans, Martijn F.M.;Dopson, Mark;Ennin, Frederick;Lens, Piet N.L.;Buisman, Cees J.N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1809-1818
    • /
    • 2008
  • Biotechnological treatment of sulfate- and metal-ions-containing acidic wastewaters from mining and metallurgical activities utilizes sulfate-reducing bacteria to produce sulfide that can subsequently precipitate metal ions. Reducing sulfate at a low pH has several advantages above neutrophilic sulfate reduction. This study describes the effect of sulfide removal on the reactor performance and microbial community in a high-rate sulfidogenic gas-lift bioreactor fed with hydrogen at a controlled internal pH of 5. Under sulfide removal conditions, 99% of the sulfate was converted at a hydraulic retention time of 24 h, reaching a volumetric activity as high as 51 mmol sulfate/l/d. Under nonsulfide removal conditions, <25% of the sulfate was converted at a hydraulic retention time of 24 h reaching volumetric activities of <13 mmol sulfate/l/d. The absence of sulfide removal at a hydraulic retention time of 24 h resulted in an average $H_2S$ concentration of 18.2 mM (584 mg S/I). The incomplete sulfate removal was probably due to sulfide inhibition. Molecular phylogenetic analysis identified 11 separate 16S rRNA bands under sulfide stripping conditions, whereas under nonsulfide removal conditions only 4 separate 16S rRNA bands were found. This shows that a less diverse population was found in the presence of a high sulfide concentration.

Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses

  • Bijmans, Martijn F. M.;Dopson, Mark;Peeters, Tom W. T.;Lens, Piet N. L.;Buisman, Cees J. N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.698-708
    • /
    • 2009
  • High rate sulfate reduction under acidic conditions opens possibilities for new process flow sheets that allow the selective recovery of metals from mining and metallurgical waste and process water. However, knowledge about high-rate sulfate reduction under acidic conditions is limited. This paper investigates sulfate reduction in a membrane bioreactor at a controlled pH of 5. Sulfate and formate were dosed using a pH-auxostat system while formate was converted into hydrogen, which was used for sulfate reduction. Sulfide was removed from the gas phase to prevent sulfide inhibition. This study shows a high-rate sulfate-reducing bioreactor system for the frrst time at pH 5, with a volumetric activity of 188 mmol $SO_4^{2-}$/I/d and a specific activity of 81 mmol $SO_4^{2-}$volatile suspended solids/d. The microbial community at the end of the reactor run consisted of a diverse mixed population including sulfate-reducing bacteria.

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Isolation and Characterization of Sulfate- and Sulfur-reducing Bacteria from Woopo Wetland, Sunchun Bay, and Tidal Flat of Yellow Sea (우포늪, 순천만, 서해 갯벌에서부터 분리한 황산염/황-환원 세균의 특성 분석)

  • Kim, So-Jeong;Min, Ui-Gi;Hong, Heeji;Kim, Jong-Geol;Jung, Man-Young;Cha, In-Tae;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.254-260
    • /
    • 2014
  • Sulfur compound includes major electron acceptors for anaerobic respiration. In this study, cultivation-based study on sulfate- and sulfur-reducing bacteria of various wetlands of Korea was attempted. To isolate sulfate- and sulfur-reducing bacteria, anaerobic roll tube method was used to obtain typical black colonies of sulfate- and sulfur-reducing bacteria. Total 11 strains obtained were tentatively identified based on comparative 16S rDNA similarity and physiological property analysis. All sulfate-reducing bacteria (8 strains) belonged to genus Desulfovibrio with >99% 16S rDNA similarities. Three sulfur reducing bacteria were also isolated: two and one isolates were affiliated with Sulfurospirillum and Desulfitobacterium, respectively. These sulfate- and sulfur-reducing bacteria were able to utilize lactate and pyruvate and sulfite and thiosulfate as common electron donors and electron acceptors, respectively. This case study will provide fundamental information for obtaining useful indigenous sulfate- and sulfur-reducing bacteria from Korean wetlands employing various combinations of cultivation conditions.

Anaerobic Degradation of Aromatic Compounds by Microorganisms in Paddy Field

  • Katayama, A.;Yoshida, N.;Shibata, A.;Baba, D.;Yang, S.;Li, Z.;Kim, H.;Zhang, C.;Suzuki, D.
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.128-135
    • /
    • 2011
  • Consortia demonstrated the high capacities of anaerobic degradation of various aromatic compounds, which were successfully enriched from gley paddy soils under different conditions. Phenol and cresol was decomposed anaerobically using nitrate, ferric oxide or sulfate as electron acceptors. Biphenyl was degraded to $CO_2$, especially without addition of external electron acceptor. Alkylphenols with middle length of alkyl chain, were co-metaboliocally degraded with the presence of hydroxylbenzoate as the co-substrate under nitrate reducing conditions. The microorganisms responsible for the anaerobic co-metabolism was Thauera sp. Reductive dechlorination activity was also observed for polychlorophenols, fthalide, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins with the presence of lactate, formate or $H_2$ as electron donor. The fthalide dechlorinator was classified as Dehalobacter sp. Coupling of two physiologically-distinct anaerobic consortia, aromatic ring degrader and reductive dechlorinator, resulted in the mineralization of pentachlorophenol under anaerobic conditions. These results suggested that gley paddy soils harbored anaerobic microbial community with versatile capacity degrading aromatic compounds under anaerobic conditions.

  • PDF

Lignocellulose Biodegradation and Interaction between Cellulose and Lignin under Sulfate Reducing Conditions (황산염 환원 조건에서 리그노셀룰로오스의 분해 및 리그닌과 셀룰로오스의 상호작용)

  • Ko, Jae-Jung;Kim, Seog-Ku;Shimizu, Yoshihisa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.131-137
    • /
    • 2007
  • In this study, the biodegradation test on lignocellulose under sulfate reducing conditions was carried out. In particular, the interaction between cellulose and lignin was investigated with various g-cellulose/g-lignin (C/L) ratios: 42.15, 4.59, 2.51, 1.14 and 0.7. It was shown that the rate of cellulose degradation decreased in proportion to the lignin content. Assuming first order degradation kinetics, the consequences of competitive inhibition were graphically shown for different C/L ratios. The relation between cellulose reduction rate and C/L ratio was expressed by logarithm function with a determination coefficient of 0.97. Lignocellulose reduction rate was also described as a logarithm function of C/L ratio showing a inhibition effect by lignin. In the mean time, the rate of lignin decomposition was higher at C/L ratio of 2.51 and 1.14 compared with C/L ratios of 4.59 and 0.7, indicating that excessive extra carbon source is not appropriate for lignin biodegradation.

  • PDF

Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes (고준위폐기물 완충재로 사용되는 벤토나이트의 미생물의 존재 및 특성)

  • Lee, Ji Young;Lee, Seung Yeop;Baik, Min Hoon;Jeong, Jong Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • There was a study for biological characteristics, except for physico-chemical and mineralogical properties, on the natural bentonite that is considered as a buffer material for the high-level radioactive waste disposal site. A bentonite slurry that was prepared from a local 'Gyeongju bentonite' in Korea was incubated in a serum bottle with nutrient media over 1 week and its stepwise change was observed with time. From the activated bentonite in the nutrient media, we can find a certain change of both solid and liquid phases. Some dark and fine sulfides began to be generated from dissolved sulfate solution, and 4 species of sulfate-reducing bacteria (SRB) were identified as living cells in samples that were periodically taken and incubated. These results show that sulfate-reducing (or metal-reducing) bacteria are adhering and existing in the powder of bentonite, suggesting that there may be a potential occurrence of longterm biogeochemical effects in and around the bentonite buffer in underground anoxic environmental conditions.

Effects of elevated CO2 on organic matter decomposition capacities and community structure of sulfate-reducing bacteria in salt marsh sediment

  • Jung, Soo-Hyun;Lee, Seung-Hoon;Park, Seok-Soon;Kang, Ho-Jeong
    • Journal of Ecology and Environment
    • /
    • v.33 no.3
    • /
    • pp.261-270
    • /
    • 2010
  • Increasing atmospheric $CO_2$ affects the soil carbon cycle by influencing microbial activity and the carbon pool. In this study, the effects of elevated $CO_2$ on extracellular enzyme activities (EEA; ${\beta}$-glucosidase, N-acetylglucosaminidase, aminopeptidase) in salt marsh sediment vegetated with Suaeda japonica were assessed under ambient atmospheric $CO_2$ concentration (380 ppm) or elevated $CO_2$ concentration (760 ppm) conditions. Additionally, the community structure of sulfate-reducing bacteria (SRB) was analyzed via terminal restriction fragments length polymorphism (T-RFLP). Sediment with S. japonica samples were collected from the Hwangsando intertidal flat in May 2005, and placed in small pots (diameter 6 cm, height 10 cm). The pots were incubated for 60 days in a growth chamber under two different $CO_2$ concentration conditions. Sediment samples for all measurements were subdivided into two parts: surface (0-2 cm) and rhizome (4-6 cm) soils. No significant differences were detected in EEA with different $CO_2$ treatments in the surface and rhizome soils. However, the ratio of ${\beta}$-glucosidase activity to N-acetylglucosaminidase activity in rhizome soil was significantly lower (P < 0.01) at 760 ppm $CO_2$ than at 380 ppm $CO_2$, thereby suggesting that the contribution of fungi to the decomposition of soil organic matter might in some cases prove larger than that of bacteria. Community structures of SRB were separated according to different $CO_2$ treatments, suggesting that elevated $CO_2$ may affect the carbon and sulfur cycle in salt marshes.

Microbiologically Induced Corrosion of Three Tubular Materials

  • Mukadam, S.;Al-Hashem, A.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.267-272
    • /
    • 2015
  • The performance of three tubular materials (C-90, L-80, and N-80) was evaluated in a synthetic brine inoculated with sulfate-reducing bacteria (SRB) in the absence and presence of biocides. A flow loop was used in the evaluation of the three alloys. Morphological examination of the alloy surfaces after exposure to SRB and after biocide treatment was performed by scanning electron microscopy (SEM) to determine the nature of any localized corrosion. The SE images of the coupon samples showed a marked difference between the biocide-treated and untreated samples. Small pits were observed on the ultrasonically cleaned surfaces of the three alloys after exposure to SRB. The biocide treatment reduced the number of SRB on the surfaces of the alloys. Results indicated that C-90 and L-80 alloys exhibited better MIC resistance than N-80 under the conditions used in this study.