Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4054

Isolation and Characterization of Sulfate- and Sulfur-reducing Bacteria from Woopo Wetland, Sunchun Bay, and Tidal Flat of Yellow Sea  

Kim, So-Jeong (Department of Microbiology, Chungbuk National University)
Min, Ui-Gi (Department of Microbiology, Chungbuk National University)
Hong, Heeji (Department of Microbiology, Chungbuk National University)
Kim, Jong-Geol (Department of Microbiology, Chungbuk National University)
Jung, Man-Young (Department of Microbiology, Chungbuk National University)
Cha, In-Tae (Division of Bioengineering, Incheon National University)
Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.50, no.3, 2014 , pp. 254-260 More about this Journal
Abstract
Sulfur compound includes major electron acceptors for anaerobic respiration. In this study, cultivation-based study on sulfate- and sulfur-reducing bacteria of various wetlands of Korea was attempted. To isolate sulfate- and sulfur-reducing bacteria, anaerobic roll tube method was used to obtain typical black colonies of sulfate- and sulfur-reducing bacteria. Total 11 strains obtained were tentatively identified based on comparative 16S rDNA similarity and physiological property analysis. All sulfate-reducing bacteria (8 strains) belonged to genus Desulfovibrio with >99% 16S rDNA similarities. Three sulfur reducing bacteria were also isolated: two and one isolates were affiliated with Sulfurospirillum and Desulfitobacterium, respectively. These sulfate- and sulfur-reducing bacteria were able to utilize lactate and pyruvate and sulfite and thiosulfate as common electron donors and electron acceptors, respectively. This case study will provide fundamental information for obtaining useful indigenous sulfate- and sulfur-reducing bacteria from Korean wetlands employing various combinations of cultivation conditions.
Keywords
Desulfovibrio; anaerobic bacteria; sulfate-reducing bacteria; sulfur-reducing bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barton, L.L., and Fauque, G.D. 2009. Biochemistry, physiology and biotechnology of sulfate reducing bacteria. Adv. Appl. Microbiol. 68, 41-98.   DOI
2 Chang, Y.J., Peacock, A.D., Long, P.E., Stephen, J.R., McKinley, J.P., Macnaughton, S.J., Hussain, A.A., Saxton, A.M., and White, D.C. 2001. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67, 3149-3160.   DOI   ScienceOn
3 Devereux, R. and Mundfrom, G.W. 1994. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl. Environ. Microbiol. 60, 3437-3439.
4 Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., and Sogin, M.L. 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69, 2765-2772.   DOI   ScienceOn
5 Fauque, G., LeGall, J., and Barton, L. 1991. Sulfate-reducing and sulfurreducing bacteria, pp. 271-337. In Shively, J.M. and Barton, L.L. (eds.), Variations in autotrophic life. Academic Press, New York, N.Y., USA.
6 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
7 Jorgensen, B.B. 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature 296, 643-645.   DOI
8 Tschech, A. and Pfennig, N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163-167.   DOI
9 Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975-2982.
10 Widdel, F. and Bak, F. 1992. Gram-negative mesophilic sulfate-reducing bacteria. In Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.), The prokaryotes, Vol. 4, pp. 3352-3378. Springer, New York, N.Y., USA.
11 Ravenschlag, K., Sahm, K., Pernthaler, J., and Amann, R. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65, 3982-3989.
12 Kelly, D.P. and Wood, A.P. 1998. Microbes of the sulfur cycle. In Burlage, R.S., Atlas, R., Stahl, D., Geesey, G., and Sayler, G. (eds.), Techniques in microbial ecology. Oxford University Press, New York, N.Y., USA.
13 Lane, D. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, England.
14 Li, J.h., Purdy, K.J., Takii, S., and Hayashi, H. 1999. Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol. Ecol. 28, 31-39.   DOI
15 Nakagawa, T., Hanada, S., Maruyama, A., Marumo, K., Urabe, T., and Fukui, M. 2002. Distribution and diversity of thermophilic sulfatereducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan). FEMS Microbiol. Ecol. 41, 199-209.   DOI
16 Rabus, R., Hansen, T.A., and Widdel, F. 2006. Dissimilatory sulfate-and sulfur-reducing prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The prokaryotes, Vol. 2, pp. 659-768. Springer, Berlin, Germany.
17 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
18 Shinn, M.B. 1941. Colorimetric method for determination of nitrite. Ind. Eng. Chem. Anal. Ed. 13, 33-35.   DOI
19 Solorzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr 14, 799-801.   DOI   ScienceOn
20 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.   DOI   ScienceOn
21 Elshahed, M.S., Senko, J.M., Najar, F.Z., Kenton, S.M., Roe, B.A., Dewers, T.A., Spear, J.R., and Krumholz, L.R. 2003. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl. Environ. Microbiol. 69, 5609-5621.   DOI