DOI QR코드

DOI QR Code

Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen Fed Gas-Lift Bioreactor

  • Bijmans, Martijn F.M. (Sub Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Dopson, Mark (Department of Molecular Biology, Umea University) ;
  • Ennin, Frederick (Sub Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Lens, Piet N.L. (Sub Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Buisman, Cees J.N. (Sub Department of Environmental Technology, Wageningen University and Research Centre)
  • Published : 2008.11.30

Abstract

Biotechnological treatment of sulfate- and metal-ions-containing acidic wastewaters from mining and metallurgical activities utilizes sulfate-reducing bacteria to produce sulfide that can subsequently precipitate metal ions. Reducing sulfate at a low pH has several advantages above neutrophilic sulfate reduction. This study describes the effect of sulfide removal on the reactor performance and microbial community in a high-rate sulfidogenic gas-lift bioreactor fed with hydrogen at a controlled internal pH of 5. Under sulfide removal conditions, 99% of the sulfate was converted at a hydraulic retention time of 24 h, reaching a volumetric activity as high as 51 mmol sulfate/l/d. Under nonsulfide removal conditions, <25% of the sulfate was converted at a hydraulic retention time of 24 h reaching volumetric activities of <13 mmol sulfate/l/d. The absence of sulfide removal at a hydraulic retention time of 24 h resulted in an average $H_2S$ concentration of 18.2 mM (584 mg S/I). The incomplete sulfate removal was probably due to sulfide inhibition. Molecular phylogenetic analysis identified 11 separate 16S rRNA bands under sulfide stripping conditions, whereas under nonsulfide removal conditions only 4 separate 16S rRNA bands were found. This shows that a less diverse population was found in the presence of a high sulfide concentration.

Keywords

References

  1. Alexander, B., S. Leach, and W. J. Ingledew. 1987. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J. Gen. Microbiol. 133: 1171-1179
  2. Asakawa, S., H. Morii, M. Akagawa-Matsushita, Y. Koga, and K. Hayano. 1993. Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNADNA hybridization among M. arboriphilicus strains. Int. J. Syst. Bacteriol. 43: 683-686 https://doi.org/10.1099/00207713-43-4-683
  3. Bijmans, M. F. M., 2008. Sulfate reduction under acidic conditions for selective metal recovery. PhD thesis. ISBN978-90-8504-925-8, Wageningen University, Wageningen
  4. Bijmans, M. F. M., T. W. T. Peeters, P. N. L. Lens, and C. J. N. Buisman. 2008. High rate sulfate reduction at pH 6 in a pHauxostat submerged membrane bioreactor fed with formate. Water Res. 42: 2439-2448 https://doi.org/10.1016/j.watres.2008.01.025
  5. Buisman, C. J. N. and G. Lettinga. 1990. Sulphide removal from anaerobic waste treatment effluent of a papermill. Water Res. 24: 313-319 https://doi.org/10.1016/0043-1354(90)90006-R
  6. Christensen, B., M. Laake, and T. Lien. 1996. Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment. Water Res. 30: 1617-1624 https://doi.org/10.1016/0043-1354(96)00049-8
  7. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington
  8. Cole, J. R., B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, et al. 2003. The ribosomal database project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31: 442-443 https://doi.org/10.1093/nar/gkg039
  9. Colleran, E., S. Finnegan, and P. Lens. 1995. Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek (Historical Archive) 67: 29-46 https://doi.org/10.1007/BF00872194
  10. Dopson, M. and E. B. Lindstrom. 2004. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microb. Ecol. 48: 19-28 https://doi.org/10.1007/s00248-003-2028-1
  11. Elliott, P., S. Ragusa, and D. Catcheside. 1998. Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res. 32: 3724-3730 https://doi.org/10.1016/S0043-1354(98)00144-4
  12. Esposito, G., J. Weijma, F. Pirozzi, and P. N. L. Lens. 2003. Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochem. 39: 491-498 https://doi.org/10.1016/S0032-9592(03)00131-6
  13. Gibert, O., J. D. Pablo, J. L. Cortina, and C. Ayora. 2003. Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J. Chem. Tech. Biotechnol. 78: 489-496 https://doi.org/10.1002/jctb.814
  14. Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113 https://doi.org/10.1016/j.hydromet.2006.03.017
  15. Icgen, B. and S. Harrison. 2006. Exposure to sulfide causes populations shifts in sulfate-reducing consortia. Res. Microbiol. 157: 784-791 https://doi.org/10.1016/j.resmic.2006.04.004
  16. Janssen, A. J. H., G. Lettinga, and A. de Keizer. 1999. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: Colloidal and interfacial aspects of biologically produced sulphur particles. Colloid Surface Physicochem. Eng. Aspect. 151: 389-397 https://doi.org/10.1016/S0927-7757(98)00507-X
  17. Johnson, D. B. and K. B. Hallberg. 2005. Acid mine drainage remediation options: A review. Sci. Total Environ. 338: 3-14 https://doi.org/10.1016/j.scitotenv.2004.09.002
  18. Jong, T. and D. L. Parry. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571 https://doi.org/10.1016/j.watres.2006.05.001
  19. Kaksonen, A. H., J. J. Plumb, P. D. Franzmann, and J. A. Puhakka. 2004. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol. Ecol. 47: 279-289 https://doi.org/10.1016/S0168-6496(03)00284-8
  20. Kaksonen, A. H., M.-L. Riekkola-Vanhanen, and J. A. Puhakka. 2003. Optimization of metal sulphide precipitation in fluidizedbed treatment of acidic wastewater. Water Res. 37: 255-266 https://doi.org/10.1016/S0043-1354(02)00267-1
  21. Kawazuishi, K. and J. M. Prausnitz. 1987. Correlation of vaporliquid equilibria for the system ammonia-carbon dioxide-water. Ind. Eng. Chem. Res. 26: 1482-1484 https://doi.org/10.1021/ie00067a036
  22. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, A. Yadhukumar, et al. 2004. ARB: A software environment for sequence data. Nucleic Acids Res. 32: 1363-1371 https://doi.org/10.1093/nar/gkh293
  23. Madigan, M., J. Martinko, and J. Parker. 2000. Biology of Microorganisms. Prentice Hall Inc., New Yersey
  24. Moosa, S. and S. T. L. Harrison. 2006. Product inhibition by sulphide species on biological sulphate reduction for the treatment of acid mine drainage. Hydrometallurgy 83: 214-222 https://doi.org/10.1016/j.hydromet.2006.03.026
  25. Morales, T. A., M. Dopson, R. Athar, and R. B. Herbert. 2005. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol. Bioeng. 90: 543-551 https://doi.org/10.1002/bit.20421
  26. O'Flaherty, V., T. Mahony, R. O'Kennedy, and E. Colleran. 1998. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphatereducing bacteria. Process Biochem. 33: 555-569 https://doi.org/10.1016/S0032-9592(98)00018-1
  27. Okabe, S., P. H. Nielsen, W. L. Jones, and W. G. Characklis. 1995. Sulfide product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res. 29: 571-579 https://doi.org/10.1016/0043-1354(94)00177-9
  28. Ouattara, A. S., B. K. C. Patel, J. L. Cayol, N. Cuzin, A. S. Traore, and J. L. Garcia. 1999. Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio alcoholivorans. Int. J. Syst. Bacteriol. 49: 639-643 https://doi.org/10.1099/00207713-49-2-639
  29. Reis, M. A. M., J. S. Almeida, P. C. Lemos, and M. J. T. Carrondo. 1992. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol. Bioeng. 40: 593-600 https://doi.org/10.1002/bit.260400506
  30. Reis, M. A. M., P. C. Lemos, J. S. Almeida, and M. J. T. Carrondo. 1990. Influence of produced acetic acid on growth of sulfate reducing bacteria. Biotechnol. Lett. 12: 145-148 https://doi.org/10.1007/BF01022432
  31. Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic ($55{\circ}C$) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotechnol. 64: 421-428 https://doi.org/10.1007/s00253-003-1430-4
  32. Sorokin, D. Y., T. P. Tourova, E. M. Spiridonova, F. A. Rainey, and G. Muyzer. 2005. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int. J. Syst. Evol. Microbiol. 55: 1069-1075 https://doi.org/10.1099/ijs.0.63415-0
  33. Speece, R. E. 1983. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Tech. 17: 416-427 https://doi.org/10.1021/es00115a001
  34. Stams, A., J. Van Dijk, C. Dijkema, and C. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114-1119
  35. Tabak, H. H., R. Scharp, J. Burckle, F. K. Kawahara, and R. Govind. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14: 423-436 https://doi.org/10.1023/A:1027332902740
  36. van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594 https://doi.org/10.1002/bit.260440505
  37. Veeken, A. H. M., L. Akoto, L. W. Hulshoff Pol, and J. Weijma. 2003. Control of the sulfide ($S^2-$) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res. 37: 3709-3717 https://doi.org/10.1016/S0043-1354(03)00262-8
  38. Waybrant, K. R., C. J. Ptacek, and D. W. Blowes. 2002. Treatment of mine drainage using permeable reactive barriers: Column experiments. Environ. Sci. Technol. 36: 1349-1356 https://doi.org/10.1021/es010751g
  39. Weijma, J., C. F. M. Copini, C. J. N. Buisman, and C. E. Schultz. 2002. Biological recovery of metals, sulfur and water in the mining and metallurgical industy, pp. 605-625. In P. N. L. Lens and L. Hulshoff Pol (eds.), Water Recycling and Resource Recovery in Industry: Analysis, Technologies and Implementation. IWA Publishing
  40. Weijma, J., F. Gubbels, L. W. Hulshoff Pol, A. J. M. Stams, P. N. L. Lens, and G. Lettinga. 2002. Competition for $H_2$ between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci. Tech. 45: 75-80
  41. Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol. Bioeng. 67: 354-363 https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X
  42. Widdel, F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria, pp. 469-586. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons

Cited by

  1. Selective recovery of nickel over iron from a nickel–iron solution using microbial sulfate reduction in a gas-lift bioreactor vol.43, pp.3, 2008, https://doi.org/10.1016/j.watres.2008.11.023
  2. The effect of sub-optimal temperature on specific sulfidogenic activity of mesophilic SRB in an H2-fed membrane bioreactor vol.45, pp.3, 2008, https://doi.org/10.1016/j.procbio.2009.10.007
  3. Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$ vol.20, pp.3, 2008, https://doi.org/10.4014/jmb.0906.06016
  4. Performance of a sulfidogenic bioreactor and bacterial community shifts under different alkalinity levels vol.101, pp.23, 2008, https://doi.org/10.1016/j.biortech.2010.07.055
  5. Processing of Arsenopyritic Gold Concentrates by Partial Bio-Oxidation Followed by Bioreduction vol.45, pp.15, 2008, https://doi.org/10.1021/es200676z
  6. Bio-reduction of elemental sulfur to increase the gold recovery from enargite vol.115, pp.None, 2008, https://doi.org/10.1016/j.hydromet.2012.01.003
  7. Effect of COD:SO4 2− Ratio, HRT and Linoleic Acid Concentration on Mesophilic Sulfate Reduction: Reactor Performance and Microbial Population Dynamics vol.7, pp.5, 2008, https://doi.org/10.3390/w7052275
  8. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid vol.100, pp.19, 2016, https://doi.org/10.1007/s00253-016-7652-z
  9. Injection of hydrogen gas stimulates acid mine drainage treatment in laboratory‐scale hydroponic root mats vol.16, pp.8, 2008, https://doi.org/10.1002/elsc.201600009
  10. POTENTIAL OF AUTOCHTHONOUS SULFATE-REDUCING MICROBIAL COMMUNITIES FOR TREATING ACID MINE DRAINAGE IN A BENCH-SCALE SULFIDOGENIC REACTOR vol.36, pp.2, 2008, https://doi.org/10.1590/0104-6632.20190362s20170662
  11. Sulfur Reduction at Hyperthermoacidophilic Conditions with Mesophilic Anaerobic Sludge as the Inoculum vol.54, pp.22, 2008, https://doi.org/10.1021/acs.est.0c02557
  12. Biological Sulfate Reduction Using Gaseous Substrates To Treat Acid Mine Drainage vol.6, pp.4, 2008, https://doi.org/10.1007/s40726-020-00160-6