• Title/Summary/Keyword: sucrose synthase

Search Result 43, Processing Time 0.028 seconds

Sucrose Synthase, UDP-glucose pyrophosphorylase and ADP-glucose Pyrophosphorylnse in Korea Ginseng Roots

  • Yelena V.Sundukova;Lee, Mi-Ja;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • The seasonal variation in the activity of sucrose synthase, ADP-glucose pyrophosphorylase and UDP-glucose pyrophosphorylase in roots of Panax ginseng C.A.Meyer have been studied. It was revealed that sucrose synthase and ADP-glucose pyrophosphorylase are adaptive enzymes and can serve as markers of sink strength, while UDP-glucose pyrophosphorylase is the maintenance enzyme. The average day temperature exceeded 24。C appeared to cause the disturbance in refilling process, affecting the starch synthesis. Study on the dependence of oxygen consumption in stele tissue with temperature revealed the sharp accelerating of this process after 24。C.

  • PDF

Characterization of Carbohydrate Metabolism during Dark-Induced Senescence

  • Kim, Young-Sang;Chang, Ji-Young;Lee, Dong-Hee
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • To investigate the changes of carbohydrate metabolism in the senescing leaves of Zea mays during dark-induced senescence, the changes in the contents of reducing sugar, sucrose and starch as well as the activities of sucrose synthase, three isozymes of invertase, and ${\alpha}$-amylase were measured. In the senescing leaves, the content of reducing sugars temporarily increased at 4 d and rapidly decreased thereafter, whereas sucrose contents gradually decreased thereafter, whereas sucrose contents gradually decreased until 3 d of senscence and significantly decreased thereafter. The activities of intracellular invertases such as soluble acid and alkaline formed gradually enhanced until 4 d of leaf senescence and significantly declined thereafter. The extracellular invertase activity showed no significant changes during leaf senescence. The deactivation of sucrose synthase was observed within 3 d of leaf senscence. On the other hand, the starch contents gradually declined during 2 d of leaf senescence, and showed a temporary increase at 3 d, which is similar to the pattern of sucrose synthase activity., These results imply that sucrose in the senescing leaves. The major enzymes which correlated to the breakdown of sucrose during dark-induced senescence were soluble acid and alkaline invertases, not sucrose and ABA accelerated leaf senescence by inducing the accumulation of reducing sugar. These result, therefore, that leaf senescence may be mediated by the temporary quantitative changes of reducing sugar induced by the activation of intracellualr inveertases.

  • PDF

Purification and Biochemical Characterization of Sucrose Synthase from the Cytosolic Fraction of Chickpea (Cicer arietinum L. cv. Amethyst) Nodules

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • Sucrose synthase (EC 2.4.1.13) has been purified from the plant cytosolic fraction of chickpea (Cicer arietinum L. cv. Amethyst) nodules. The native enzyme had a molecular mass of $356{\pm}15kD$. The subunit molecular mass was $87{\pm}2kD$, and a tetrameric structure is proposed for sucrose synthase of chickpea nodule. Optimum activities in the sucrose cleavage and synthesis directions were at pH 6.5 and 9.0, respectively. The purified enzyme displayed typical hyperbolic kinetics with substrates in cleavage and synthesis reactions. Chickpea nodules sucrose synthase had a high affinity for UDP ($K_m$, $8.0{\mu}M$) and relatively low affinities for ADP ($K_m$, 0.23 mM), CDP ($K_m$, 0.87 mM), and GDP ($K_m$, 1.51 mM). The $K_m$ for sucrose was 29.4 mM. In the synthesis reaction, UDP-glucose ($K_m$, $24.1{\mu}M$) was a more effective glucosyl donor than ADP-glucose ($K_m$, 2.7 mM), and the $K_m$ for fructose was 5.4 mM. Divalent cations, such as $Ca^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, stimulated the enzyme activity in both the cleavage and synthesis directions, and the enzyme was very sensitive to inhibition by $HgCl_2$ and $CuSO_4$.

  • PDF

Changes of Sucrose Content and Invertase Activity in Leaves of Barley Seedlings under Low Temperature (저온 처리한 보리 유식물 잎의 설탕함량과 Invertase의 활성변화)

  • 이명애
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.91-95
    • /
    • 1992
  • Changes of contents of reducing sugar and sucrose and activities of sucrose-phosphate synthase, sucrose synthease and invertase from the leaves of barley (Hordeum vulgare L. cv. Chalssal) seedlings grown at $4^{\circ}C$ were investigated, and the property of acid invertase were also examined. In the seedlings grown at $4^{\circ}C$ for 3 days, the contents of reducing sugar and sucrose were increased to 1.3 and 2.4 times, respectively. Activity of acid invertase was decreased markedly by cold treatment while the activities of sucrosephosphate synthase, sucrose synthase, and alkaline invertase were not changed. In acid phosphatase purified partially by ammonium sulfate fractionation and DEAE-Sephacel column chromatography, the $K_m$ value for sucrose was 9.5 mM and the optimum pH and temperature was 5.5 and $35^{\circ}C$ respectively. This enzyme was supposed to be ${\beta}-fructosidase$ by studies on the substrate specificity and the molecular weight was estimated to be 63 Kd by Sephadex G-200 gel chromatography.graphy.

  • PDF

The Effects of Phosphate Starvation on the Activities of Acid and Alkaline Phosphatase, Fructose-1,6-bisphosphatase, Sucrose-phosphate Synthase and Nitrate Reductase in Melon (Cucumis melo L.) Seedlings

  • Kang, Sang-Jae;Lee, Chang-Hee;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Plants response to phosphate starvation include the changes of activity of some enzymes, such as phosphatases, fructose-1,6-bisphosphatase, sucrose-phosphate synthase and nitrate reductase. In this study, to determine the effects of phosphate starvation on the change of activities of acid and alkaline phosphatase, fructose-1,6-bisphosphatase, sucrose-phosphate synthase, and nitrate reductase were studied in melon seedlings (Cucumis melo L.). The content of the protein and chlorophyll tended to relatively reduced in melon seedlings subjected to phosphate starvation. Acid phosphatase activity in first and second leaves of melon seedlings was relatively higher than that of third and fourth leaves of seedlings in 14 days after phosphate starvation treatment, respectively. Active native-PAGE band patterns of acid phosphatase in melon leaves showed similar to activities of acid phosphatase, whereas alkaline phosphatase activity was different from the change in the activity of acid phosphatase. Inorganic phosphate content in melon seedlings leaves was constant. The changes of Fructose-1,6-bisphosphatase and sucrose phosphate synthase activities showed similar patterns in melon seedlings leaves, and between these enzymes activities and phosphate nutrition negatively related. Fructose-1,6- bisphosphatase and sucrose phosphate synthase activities showed significant difference in second and fourth leaves, but nitrate reductase showed significant difference in first and second leaves in 14days after phosphate starvation treatment. We concluded that phosphate nutrition could affect the distribution of phosphate, carbon and nitrogen in melon seedlings.

Production of Flavonoid O-Glucoside Using Sucrose Synthase and Flavonoid O-Glucosyltransferase Fusion Protein

  • Son, Mi-Hyel;Kim, Bong-Gyu;Kim, Dae-Hwan;Jin, Mi-Rim;Kim, Kwang-Pyo;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.709-712
    • /
    • 2009
  • Enzymatic glucosylation with glycosyltransferases can be used to regulate the water solubility of aglycone. The drawback of this process is the demand of UDP-glucose as a sugar donor. We made an in-frame fusion of the flavonoid O-glucosyltransferase (OsUGT-3) and sucrose synthase (AtSUS) genes. The resulting fusion protein, OsUGT3-AtSUS, was expressed in E. coli and purified. When sucrose and UDP were supplied, the fusion protein was able to convert quercetin into quercetin O-glucoside without the addition of UDP-glucose. In addition, UDP-glucose was recycled when sucrose was added to the reaction mixture. This fusion protein is useful for the enzymatic production of flavonoid O-glucosides.

Altered Invertase expression induced by BCTV on Arabidopsis

  • Kim, Soyeon;Park, Eunsuk;Lee, Tack-Kyun;Lee, Sukchan
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.74.2-74
    • /
    • 2003
  • Arabidopsis infected with beet curly top virus (BCTV) has the systemic symptoms like stunting of Plant growth, curling of leaves and shoot tips, and callus induction. The regulation of sucrose metabolism by BCTV infection is essential for obtaining the energy source in the process of virus replication and symptom development. Sucrose metabolism-associated gene expression and biochemical enzyme activity were analyzed with the rossette leaves and inflorescencestems of BCTV infected Arabidopsis by the time course of 1, 7, 14, 21 day postinoculation. The expression of invertase and sucrose synthase genes ( encoding sucrose-cleaving enzymes )was increased and reversely the level of Atkin10a ( sucrose non-fermenting gene ) was decreased, resulting by semi-quantitative reverse transcription polymerase chain reaction. The biochemical analysis of invertase and sucrose synthase activity was performed. The activity of neutral invertase in the inflorescence stems was elevated remarkably. The photosynthetic response in the source of sucrose metabolism was consistent with the down-regulation of ribulose 1,5 bisphosphate carboxylase gene, and lower activity than mock-inoculated plants. The levels of genes pertaining to the cell cycle, hormone, and biotic stress-related pathway showed an increase or a decrease dependent on viral symptoms. Therefore, sucrose sensing by BCTV infection can regulate the expression of sucrose metabolism-related key enzymes such as invertase and Atkin10a, and these gene products might influence to symptom development.

  • PDF

Effect of Hypoxia on Carbohydrate Metabolism in Barley Seedlings (저산소 조건이 보리 유묘의 탄수화물대사에 미치는 영향)

  • Choi Heh Ran;Park Myoung Ryoul;Kim Jung Gon;Namkoong Seung Bak;Choi Kyeong-Gu;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.170-174
    • /
    • 2005
  • Barley plants growing in the wet paddy field easily encounter suboptimal oxygen concentration in the rhizosphere that causes molecular oxygen deficiency in root cells. The capacity of root cells to utilize energy sources is known to be positively related to resistance to hypoxia stress. This study was conducted to investigate effects of hypoxia on enzymes involved in the starch and sucrose metabolism. Barley seedlings at the third leaf stage were subjected to hypoxia (1 ppm dissolved oxygen) by purging the culture solution with nitrogen gas for up to seven days. The protein content was slightly decreased by hypoxia for 7 days. $\alpha-Amylase$ activities increased significantly in the root but not in the shoot after 3 to 7 days of hypoxia. $\beta-Amylase$ activities were not affected significantly in both tissues. Additionally, sucrose synthase activities were affected little in both tissues by 7 days of hypoxia. The results indicate that root cells activate break­down of polysaccharide reserves in response to an acute hypoxia to supply energy sources for fermentative glycolysis and cell wall fortification.

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.579-586
    • /
    • 2010
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

Comparison of Free Sugar Content and Related Enzyme Activities on Different Parts of 'Changhowon Hwangdo' Peach Fruit (복숭아 '장호원황도' 과실의 부위별 유리당 함량 및 관련 효소활성 비교)

  • Kim, Sung-Jong;Park, Hye-Young
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.387-393
    • /
    • 2010
  • The free sugar content and related enzymes of four different parts, inner, outer, stylar end and stem end, of 'Changhowon Hwangdo' peach ($Prunus$ $persica$, L. Batsch) fruit were compared from August to September in 2006, i.e., from 120 to 150 days after full bloom (DAFB). The soluble solids content (SSC) of stylar end was the highest among the four fruit parts at 150 DAFB. Changes of free sugar content were similar to that of SSC in the four parts. The starch content at the stylar end was the highest at 120 DAFB, while all the other parts showed low starch contents at 150 DAFB. The free sugar composition of peach changed during fruit development. The sucrose was low at 120 DAFB and increased gradually in all parts of peach fruit. On the contrary glucose, fructose and sorbitol decreased with fruit development. The free sugar contents and related enzymes activities were investigated during fruit development. The rapid increase of sucrose contents during fruit development was more affected by sucrose synthase than sucrose phosphate synthase. Activity of SS in the four fruit parts increased continuously over the fruit development period, but activity of acid invertase showed a downward trend. This study found that the free sugar content was affected by enzyme activity for the synthesis or the cleavage. However, it was very difficult to explain sugar accumulation of peach segments with related-enzymes.