Comparison of Free Sugar Content and Related Enzyme Activities on Different Parts of 'Changhowon Hwangdo' Peach Fruit

복숭아 '장호원황도' 과실의 부위별 유리당 함량 및 관련 효소활성 비교

  • Kim, Sung-Jong (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Park, Hye-Young (National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2007.08.06
  • Accepted : 2010.02.24
  • Published : 2010.06.30

Abstract

The free sugar content and related enzymes of four different parts, inner, outer, stylar end and stem end, of 'Changhowon Hwangdo' peach ($Prunus$ $persica$, L. Batsch) fruit were compared from August to September in 2006, i.e., from 120 to 150 days after full bloom (DAFB). The soluble solids content (SSC) of stylar end was the highest among the four fruit parts at 150 DAFB. Changes of free sugar content were similar to that of SSC in the four parts. The starch content at the stylar end was the highest at 120 DAFB, while all the other parts showed low starch contents at 150 DAFB. The free sugar composition of peach changed during fruit development. The sucrose was low at 120 DAFB and increased gradually in all parts of peach fruit. On the contrary glucose, fructose and sorbitol decreased with fruit development. The free sugar contents and related enzymes activities were investigated during fruit development. The rapid increase of sucrose contents during fruit development was more affected by sucrose synthase than sucrose phosphate synthase. Activity of SS in the four fruit parts increased continuously over the fruit development period, but activity of acid invertase showed a downward trend. This study found that the free sugar content was affected by enzyme activity for the synthesis or the cleavage. However, it was very difficult to explain sugar accumulation of peach segments with related-enzymes.

복숭아 과실 부위별 유리당 축적와 효소와의 관계를 살펴보고자 2006년 8월에서 9월까지 '장호원황도' 복숭아의 과경부, 과정부, 과피부, 핵주위의 유리당 함량과 당 관련 효소활성 변화를 살펴보았다. 당도는 만개 후 150일까지 증가하는 경향을 나타냈고 과정부에서 가장 높은 당도를 보였으며, 모든 부위에서 총 유리당 함량은 당도 변화와 매우 유사하게 나타났다. 비교적 전분의 함량이 높았던 만개 후 120일에 과정부에서 높은 전분 함량을 보였으나 만개 후 150일에는 부위별로 함량 차이가 작게 나타났다. 부위별 유리당 조성의 변화는 시기에 따라서 차이를 보였으며 자당 함량은 만개 후 150일까지 점차 증가하였으나 솔비톨은 만개 후 130일 이후에 점차 감소하였다. 만개 후 150일까지 모든 부위에서 자당은 증가하고 반대로 포도당, 과당, 솔비톨은 감소하는 경향을 보였다. 또한, 과실 발육 동안 자당 함량의 증가는 sucrose phosphate synthase(SPS) 활성보다는 sucrose synthase(SS)활성에 의하여 더 많은 영향을 받는 것으로 나타났다. SS효소활성은 만개 후 120일에는 낮게 나타났으나 acid invertase(AI) 활성은 높았으며, 만개 후 150일에는 반대의 경향을 나타냈다. 따라서 유리당을 합성하거나 분해하는 효소의 활성에 따라서 복숭아 과실 생육시기별 축적되는 유리당 함량이 영향을 받았으나, 과실의 각 부위에 따라서 모든 유리당 함량을 관련 효소활성으로만 설명하기는 어려웠다.

Keywords

References

  1. Barry, G.H., W.S. Castle, and F.S. Davies. 2004. Rootstocks and plant water relations affect sugar accumulation of citrus fruit via osmotic adjustment. J. Amer. Soc. Hort. Sci. 129:881-889.
  2. Bianco, R. L. and M. Rieger. 2002. Partitioning of sorbitol and sucrose catabolism within peach fruit. J. Amer. Soc. Hort. Sci. 127:115-121.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brandon, R.H. and E. Etxeberria. 2001. Metabolic contributors drought-enhanced accumulation of sugars and acids in oranges. J. Amer. Soc. Hort. Sci. 126:599-605.
  5. Chen, J., Z. Wang, J. Wu, Q. Wang, and X. Hu. 2007. Chemical compositional characterization of eight pear cultivars grown in China. Food Chemistry 104:268-275. https://doi.org/10.1016/j.foodchem.2006.11.038
  6. Cho, M.D. 2000. Characteristics of fruit tissue development and flesh pithiness symptoms in 'Yumyeong' peach. Ph.D. Thesis. Kyung Hee Univ., Suwon, Korea.
  7. Genard, M. and M. Souty. 1996. Modeling the peach sugar contents in relation to fruit growth. J. Amer. Soc. Hort. Sci. 121:1122-1131.
  8. Horton, B.D. 1992. Ripening patterns within a peach as indicated by force and soluble solids concentration. J. Amer. Soc. Hort. Sci. 117:784-787.
  9. Hubbard, N.L., D.M. Pharr, and S.C. Huber. 1991. Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species. Physiol. Plant. 82:191-196. https://doi.org/10.1111/j.1399-3054.1991.tb00080.x
  10. Itai, A. and T. Tanahashi. 2008. Inhibition of sucrose loss during cold storage in Japanese pear (Pyrus pyrifolia Nakai) by 1-MCP. Postharvest Biol. Technol. 48:355-363. https://doi.org/10.1016/j.postharvbio.2007.10.015
  11. Kim, S.J. and H.Y. Park. 2007. Changes in sugar composition and related enzyme activities during fruit development in peach cultivars. Kor. J. Hort. Sci. Technol. 25:204-211.
  12. Kweon, H.J.,W.J. Yoo, M.J. Kim, B.Y. Baek, and J.C. Nam. 2005. Distribution of soluble solids content in the parts of the apple. Kor. J. Hort. Sci. Technol. 23 (Suppl. I):91. (Abstr.)
  13. Kwon, J.H., H.Y. Park, J.H. Jun, and H.J. Lee. 2008. Changes of sugar composition and related enzyme activities of 'Kansuke Hakuto' and 'Kurakatawase' peach fruit after rainfall. Hort. Environ. Biotechnol. 49:85-89.
  14. Lee, S.W. and Z.H. Kim. 2003. Path-coefficient analysis of some characters affecting fruit sweetness in melon (Cucumis melo ssp.). J. Kor. Soc. Hort. Sci. 44:661-665.
  15. Lowell, C.A., P.T. Tomlinson, and K.E. Koch. 1989. Sucrosemetabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol. 90:1394-1402. https://doi.org/10.1104/pp.90.4.1394
  16. Moing, A., C. Renaud, M. Gaudillere, P. Raymond, P. Roudeillac, and B. Denoyes-Rothan. 2001. Biochemical changes during fruit development of four strawberry cultivars. J. Amer. Soc. Hort. Sci. 126:394-403.
  17. Moriguchi, T., T. Sanada, and S. Yamaki. 1990. Seasonal fluctuations of some enzymes relating sucrose and sorbitol metabolism in peach fruit. J. Amer. Soc. Hort. Sci. 115:278-281.
  18. Moriguchi, T., T. Sanada, and S. Yamaki. 1991. Properties of acid invertase purified from peach fruit. Phytochemistry 30:95-97. https://doi.org/10.1016/0031-9422(91)84105-2
  19. Moriguchi, T., K. Abe, T. Sanada, and S. Yamaki. 1992. Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear. J. Amer. Soc. Hort. Sci. 117:274-278.
  20. Obiadalla-Ali, H. A.R. Fernie, J. Kossmann, and J. R. Lloyd. 2004. Developmental analysis of carbohydrate metabolism in tomato (Lycopersicon esculentum cv. Micro-Tom) fruits. Physiol. Plant. 120:196-204. https://doi.org/10.1111/j.0031-9317.2004.0167.x
  21. Ohmiya, A. and N. Kakiuchi. 1990. Quantitative and morphological studies on starch of apple fruit during development. J. Jap. Soc. Hort. Sci. 59:417-423. https://doi.org/10.2503/jjshs.59.417
  22. Song, K.J. 1999. Changes of sugar composition and the activities of related enzyme in apple fruits. PhD. Thesis, Seoul Nat'l. Univ., Seoul, Korea.
  23. Song, K.J., J.H. Hwang, and H.K. Yun. 2003. Changes of soluble sugar and starch concentrations in fruits of apple cultivars differing in maturity. J. Kor. Soc. Hort. Sci. 44:207-210.
  24. Song, K.J. and K.C. Ko. 1997. Relationship between sugar content and sucrose synthase activity in orange fruits. J. Kor. Soc. Hort. Sci. 38.:242-245.
  25. Song, K.J., E. Echeverria, and H.S. Lee. 1998. Distribution of sugars and related enzymes in the stem and blossom halves of 'Valencia' oranges. J. Amer. Soc. Hort. Sci. 123:416-420.
  26. Vizzotto, G., R. Pinton, Z. Varanimi, and G. Costa. 1996. Sucrose accumulation in developing peach fruit. Physiol. Plant. 96: 225-230. https://doi.org/10.1111/j.1399-3054.1996.tb00206.x
  27. Yamaguchi, H., Y. Kanayama, J. Soejima, and S. Yamaki. 1996. Changes in the amounts of the NAD-dependent sorbitol dehydrogenase and its involvement in the development of apple fruit. J. Amer. Soc. Hort. Sci. 121:845-852.
  28. Yamaki, S. and K. Ishikawa. 1986. Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J. Amer. Soc. Hort. Sci. 111: 134-137.
  29. Yamaki, S. and T. Moriguchi. 1989. Seasonal fluctuation of sorbitol-related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J. Jap. Soc. Hort. Sci. 57:602-607. https://doi.org/10.2503/jjshs.57.602
  30. Yamaki, S. 1995. Physiology and metabolism of fruit development: Biochemistry of sugar metabolism and compartmentation in fruits. Acta Hort. 398:109-120.
  31. Yelle, S., J.D. Hewitt, N.L. Robinson, S. Damon, and A. B. Bennett. 1988. Sink metabolism in tomato fruit. Plant Physiol: III. Analysis of carbohydrate assimilation in a wild species. 87:737-740.
  32. Yoon, I.K., J.K. Kim, and H.C. Lee. 2002. Study on the change of quality in peach fruit. Ann. Rep. Nat. Hort. Re. Ins. 163-172.
  33. Zhou, L., and R.E. Paull. 2001. Sucrose metabolism during papaya (Carica popaya) fruit growth and ripening. J. Amer. Soc. Hort. Sci. 126:351-357.