• Title/Summary/Keyword: successive analysis technique

Search Result 59, Processing Time 0.025 seconds

Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient (강성계수의 전달에 의한 평판 구조물의 구조해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF

Performance Analysis of Maximum-Likelihood Code Acquisition Technique for Preamble Search in CDMA Reverse Link (CDMA 역방향 링크에서의 프리앰블 탐색을 위한 최대우도 동기획득 방식의 성능 분석)

  • 박형래;강법주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.161-174
    • /
    • 1996
  • Addressed in this paper is performance analysis of the maximum-likelihood code acquisition technique for slotted-mode preamble search in the CDMA reverse link. The probabilities of detection, miss, and false alarm are derived analytically for a multiple $H_{1}$ cell case in a frequency-selective Rayleigh fading channel, based on the statics of the CDMA noncoherent demodulator output. the probability density function of the decision variable consisting of successive demodulator outputs is also derived by considering the fading characteristics of the received signal for both single and dual antenna cases. The performance of the code acquisition technique is evaluated numerically with an emphasis on investigating the effects of post-detection integration, fading rate, and antenna diversity on the detection performance.

  • PDF

An Analysis Technique of Ultrasonic Pulse Signal for Measuring Ship's Draught (선박의 홀수 측정을 위한 초음파 펄스 신호의 해석기법)

  • 이은방;이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 1995
  • Although ship's draught information onboard is substantial for both the safety of navigation and the estimation of loaded cargoes, its accuracy depends, in conventional surveying method, on the skillfulness of observers and the condition of the sea surface round the vessel. To obtain more accurate information accessibly, measuring instruments with sophisticated sensors such as mechanical, electronic and ultrasonic transducers have been developed. However, they have still limitation in accuracy and in making up a system due to the complexity of processing signal. In this paper, we propose a new technique for analyzing ultrasonic pulse signal, in order to improve the measurement accuracy and simplify a remote sensing system of draught by ultrasonic waves. In this technique, pulse signal is translated into phase curve which is composed of the phase value defined in time domain. Then, the time interval between two signals different in waveform, is waveform, is analytically determined by calculating average time difference on phase curves. Also, analytical procedure can be carried out in real time with the successive five data sampled at T/4, for high speed digital processing with computer and A/D converter. This technique is useful for measuring draught under the influence of sea condition and for interfacing its data briefly to the integrated bridge system.

  • PDF

In-Plane Buckling of Prime and Quadratic Parabolic Arches with Fixed Ends (양단고정 Prime과 Quadratic 포물선 아치의 면내좌굴에 관한 연구)

  • 이병구;김종만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • A numerical procedure for the analysis of slender arch buckling problems for uniform dead weight is presented in this paper. Such loading changes in the arch profile. The problem is nonlinear. The numerical procedure is limited to an inextensible analysis and to elastic behavior. Based upon a numerical integration technique developed by Newmark for straight beams, a large deflection bending analysis is combined with small deflection buckling routines to formulate the numerical procedure. The numerical procedure is composed of a combination of the numerical integration and successive approximations procedure. The results obtained in this study are as follows : 1.The critical loads obtained in this study coincide with the results by Austin so that the algorithm developed in this study is verified. 2.The numerical results are converged with good precision when the half arch is divided into 10 segments in both Prime and Quadratic section. 3.The critical loads are decreased as the ratios of rise versus span are increased. 4.The critical loads are increased as the moments of inertia at the ends are increased. 5.The critical loads of Prime section are larger than that of Quadratic section under the same profile conditions.

  • PDF

Analysis of fatigue crack growth behavior in composite-repaired aluminum plate (복합재 패치로 한쪽 면을 보강한 평판의 균열선단 진전거동 해석)

  • Lee Woo-Yong;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.241-245
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of-plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from previous studies. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

  • PDF

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Vocal Fold Videokymography: New Approach for the Analysis of Vocal Fold Vibratory Pattern

  • Lee, J.S.;Kim, E.J.;Yi, W.J.;Park, K.S.;Sung, M.Y.;Sung, M.H.;Kim, K.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.313-315
    • /
    • 1997
  • We developed a new analysis technique for the assessment of irregular vibratory movement of vocal folds. Successive frames of pre-recorded video images from videostroboscopy were transferred to computer memory and a vibratory tract of one selected point was described as a waveform by displaying the same lines of all frames along the y-direction. By applying this technique, irregular vibratory patterns of multiple regions, such as asynchronized registration of glottal cycles, could be easily visualized. It would be possible to monitor and analyze the pathologic changes of vocal fold movement by means of this newly developed system.

  • PDF

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF

The dynamic relaxation method using new formulation for fictitious mass and damping

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.109-133
    • /
    • 2010
  • This paper addresses the modified Dynamic Relaxation algorithm, called mdDR by minimizing displacement error between two successive iterations. In the mdDR method, new relationships for fictitious mass and damping are presented. The results obtained from linear and nonlinear structural analysis, either by finite element or finite difference techniques; demonstrate the potential ability of the proposed scheme compared to the conventional DR algorithm. It is shown that the mdDR improves the convergence rate of Dynamic Relaxation method without any additional calculations, so that, the cost and computational time are decreased. Simplicity, high efficiency and automatic operations are the main merits of the proposed technique.

Optimum Design of Piled Raft Foundations using Genetic Algorithm (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계)

  • 김홍택;강인규;황정순;전응진;고용일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.415-422
    • /
    • 1999
  • This paper describes a new optimum design approach for piled raft foundations using the genetic algorithm. The objective function considered is the cost-based total weight of raft and piles. The genetic algorithm is a search or optimization technique based on nature selection. Successive generation evolves more fit individuals on the basis of the Darwinism survival of the fittest. In formulating the genetic algorithm-based optimum design procedure, the analysis of piled raft foundations is peformed based on the 'hybrid'approach developed by Clancy(1993), and also the simple genetic algorithm proposed by the Goldberg(1989) is used. To evaluate a validity of the optimum design procedure proposed based on the genetic algorithm, comparisons regarding optimal pile placement for minimizing differential settlements by Kim et at.(1999) are made. In addition using proposed design procedure, design examples are presented.

  • PDF