• Title/Summary/Keyword: subway tunnel

Search Result 381, Processing Time 0.028 seconds

Estimation of Earth Pressures Acting on Box Structures Buried in Ground (지중에 매설된 박스구조물에 작용하는 토압 산정)

  • Hong, Won-Pyo;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2015
  • The earth pressure acting on underground structure was measured by application of the instrumentation system in the subway construction site constructed by the method of cut-and-cover tunnel. The measured earth pressure was compared with the earth pressure obtained from the existed theoretical equation, and the actual earth pressure diagram acting on the underground structure was investigated. As a result of investigation, the vertical earth pressure is mainly affected by the embankment height, and the lateral earth pressure is significantly affected by whether the existence of earth retaining structures or not. The measured vertical earth pressure is very similar to the theoretical earth pressure proposed by Bierbaumer. The measured lateral earth pressure is closed to the active earth pressure proposed by Rankine rather than the earth pressure at rest. The coefficient of earth pressure in soil deposit layer is about 0.35, and the coefficient in soft rock deposit layer is about 0.21. For design and construction the underground structures, therefore, it is reasonable estimation that the lateral earth pressure acting on structures installed in soil deposit layers is an average value between active earth pressure and earth pressure at rest. In rock deposit layers, the lateral earth pressure acting on structure is an active earth pressure only.

A Study on Concrete Lining Stress Changes Considering Load Supporting Capacity of Primary Supports of NATM Tunnel (NATM 터널에서 1차지보재의 지보압을 고려한 콘크리트라이닝 응력변화에 관한 연구)

  • Jeon, Sang Hyun;Shin, Young Wan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.147-154
    • /
    • 2011
  • Currently NATM tunnels are designed by applying the initial ground loads caused during construction to the primary supports, conisting of shotcrete, steel ribs and rock bolts. For long term considerations, it is assumed that the primary supports lose its functionality and therefore the secondary support, i.e. concrete lining, is design to resist against the entire ground loads. But the steel ribs, usually applied to bad ground conditions, are embedded in shotcrete causing very little corrosion and therefore the assumption that the primary support will lose all of its functionality is too conservative. Also even though shotcrete carbonates in long term, excluding it from design is also too conservative. In this study, we have, through analytical and numerical analysis, set a rational level of support pressure and allowable relaxed rock mass height sustainable by the primary support for long term design. Changes in sectional forces of the concrete lining considering the calculated support pressure of the primary supports was also carried out. Shallow subway tunnels were considered in the analysis with weathered rock and soft rock ground conditions. The analysis results showed that, by considering the support pressure of steel ribs, an economical design of the concrete lining is possible.

A Study on Secondary Lining Design of Tunnels Using Ground-Lining Interaction Model (지반-라이닝 상호작용 모델을 이용한 터널 2차라이닝 설계에 관한 연구)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.365-375
    • /
    • 2006
  • The structural analysis for the secondary lining of tunnels is generally performed by a frame analysis model. This model requires a ground loosening load estimated by some empirical methods, but the load is likely to be subjective and too large. The ground load acting on the secondary lining is due to the loss of the supporting function of the first support members such as shotcrete and rockbolts. Therefore, the equilibrium condition of the ground and the first support members should be considered to estimate the ground load acting on the secondary lining. Ground-lining interaction model, shortly GLI model, is developed on the basis of the concept that the secondary lining supports the ground deformation triggered by the loss of the support capacity of the first support members. Accordingly, the GLI model can take into account the ground load reflecting effectively not only the complex ground conditions but the installed conditions of the first support members. The load acting on the secondary lining besides the ground load includes the groundwater pressure and earthquake load. For the structural reinforcement of the secondary lining based on the ultimate strength design method, the factored load and various load combination should be considered. Since the GLI model has difficulty in dealing with the factored load, introduced in this study is the superposition principle in which the section moment and force of the secondary lining estimated for individual loads are multiplied by the load factors. Finally, the design method of the secondary lining using the GLI model is applied to the case of a shallow subway tunnel.

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.

Lost measurement sensor data estimation technology based on trend analysis of adjacent sensors using Boussinesq equation (부시네스크 식을 이용한 인접 센서 데이터 추세 분석 기반 손망실 계측 센서 데이터 추정 기법)

  • Choi, Sang-Il;Shim, Seungbo;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.221-232
    • /
    • 2021
  • Most of measurement sensors used for maintenance are continuously exposed to various environmental factors such as transportation and rainfall, so the possibility of breakage increases gradually. The maintenance measurement sensor of domestic subway tunnel shows an average of 14.2% to 14.8% of loss rate after about 5 to 6 years from installation, and it shows a sensor loss rate of about 13.9% in case of foreign countries. As a result, it can be seen that an average of 15% of maintenance measurement sensors at home and abroad cannot send measuring values after 5~6 years. In order to continuously collect accurate data, measurement data must be recovered by performing repair or replacement of the sensor, but some lost measurement sensors are buried after installation. So, there are many difficulties in repairing sensors, including cost and time. Therefore, in this paper, we propose lost measurement sensor data estimation technology based on data trend analysis using adjacent sensors.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

Characteristics of particulate matter collection efficiency and ozone emission rate of an electrostatic precipitator by thickness of high-voltage electrode and distance of collection plates (고전압 전극 두께와 집진판 간격에 따른 전기집진기의 미세먼지 집진효율 및 오존발생 특성)

  • Lee, Jae-In;Woo, Sang-Hee;Kim, Jong Bum;Lee, Seung-Bok;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.171-180
    • /
    • 2018
  • To optimize the shape of the electrostatic precipitator for the removal of particulate matter in subway environments, the wind-tunnel experiments were carried out to characterize collection efficiency and ozone emission rate. As a standardized parameter, power consumption divided by the square of flow velocity, was increased, the $PM_{10}$ collection efficiency increased. If the standardized parameter is higher than 1.0 due to high power consumption or low flow velocity, increase in thickness of electrodes from 1 to 2 mm, or increase in distance of collection plates from 5 to 10 cm did not change the $PM_{10}$ collection efficiency much. Increase in thickness of high-voltage electrodes, however, can cause decrease in $PM_{10}$ collection efficiency by 28% for low power consumption and high flow velocity. The ozone emission rate decreased as distance of collection plates became wider, because the ozone emission rate per unit channel was constant, and the number of collection channels decreased as the distance of collection plates increased. When the distance of collection plates was narrow, the ozone emission rate increased with the increase of the thickness of electrodes, but the difference was negligible when the distance of collection plates was wide. It was found that the electrostatic precipitator having a thin high-voltage electrodes and a narrow distance of collection plates is advantageous. However, to increase the thickness of high-voltage electrodes, or to increase the distance of collection plates is needed, it is necessary to increase the applied voltage or reduce the flow rate to compensate reduction of the collection efficiency.

Design of Simulation Prototype UI for Virtual Reality-based Air Blast and Vibration (가상현실 기반 발파소음 및 진동 시뮬레이션 UI 설계)

  • Lee, Dongyoun;Lee, Sang Gyu;Seo, Myoung Bae
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.35-44
    • /
    • 2021
  • Recently, the new subway project called "Great Train Express" is in progress. During the tunnel excavation in the center of city, vibration and noise are generated, which make an uncomfortable effect on nearby residents. In order to prepare for this situation, the construction company generally establishes a noise and vibration management plan at the site from the construction planning stage through consultation with the residents of nearby areas and establishment of countermeasures for complaints raised. However, despite the establishment of a noise and vibration management plan, civil complaints have not been fundamentally resolved due to occurring noise and vibration during the construction in progress. In order to solve this problems, one of the best solution is to provide noise and vibration simulation technology with a high sense of reality and immersion for residents of nearby areas. Considering the ease and convenience of using the system, we intend to develop a UI(User Interface) necessary for the development of a simulation system that can directly experience the air blast and vibration based on virtual reality. The results of this study are expected to contribute to the development of virtual reality-based air blast and vibration simulations in the future.

Design of Standard Submission Format for Underground Structures : An Automated Update of the UnderSpace Integrated Map (지하공간통합지도 자동갱신을 위한 지하구조물 제출 표준 설계)

  • Park, Dong Hyun;Jang, Yong Gu;Ryu, Ji Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.469-476
    • /
    • 2021
  • The framework plan for the development of an integrated underground space map was established of preventing ground subsidence. The mapping process is expected to be completed to the level of nationwide municipal government standards by end of this year. To facilitate the utilization of the integrated underground space map, paper-based drawings for specialized organizations in underground safety impact assessment have been provided since September 2018, and services for local government officials have been provided in the underground information utilization system since May 2019. However, the map is utilized based on the information at the time of the initial development of the map, without any updates, thereby resulting in a lack of accuracy and latest information. This has led to a decrease in the utilization and reliability of the information. Therefore, in this study, for the underground structures(subway, underground shopping mall, underground passage, underground roadway, underground parking lot, utility tunnel), which are the key components of the integrated underground space map, a standard format for the submission of completed drawings is designed in accordance with Article 42 (2) of the Special Act on Underground Safety Management, which aims at laying the foundation for establishing the updated system of the integrated underground space map. In addition, through the verification of the automatically updated underground structure data based on the standard format, the reliability of the data can be assured. This format is expected to contribute to the improved utilization of the integrated underground space map in the future.

A Case Study of Delay Analysis for E.P.B Shield TBM Method in Construction Site (E.P.B(Earth Pressure Balance) Shield TBM 공사의 공기지연 사례연구)

  • Kwak, Jun-Hwan;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.737-743
    • /
    • 2009
  • Shield TBM, since it was employed for Suyoungman Bay riverbed tunnel of Busan Subway in 2000,has been increasingly adopted in Korea, and in line with growing popularity, the study on Shield TBM has been expanded. However the studies mostly focus on ground condition in a bid to estimate the advancement rate and develop the model for calculating the excavation efficiency, whereas the efforts to analyze the cause of delay and to develop the improvement measures have been neglected. Thus the studies were mostly intended to analyze the schedule slippage focusing on ground conditions, while the study on schedule behind due to equipment itself and related facilities have yet to be attempted in earnest. This study hence was aimed at evaluating the troubles and schedule slippage caused by mechanical elements such as shield TBM equipment and tools and ground conditions, making use of FMEA approach so as to analyze the risk of schedule delay by such elements, thereby proposing the preventive measures to deal with high-risk factors. So, this study suggest the solution to highly ranked trouble factor for the purpose of enhance the efficiency on Shield TBM.