• Title/Summary/Keyword: subunits$(\alpha'-,\

Search Result 187, Processing Time 0.029 seconds

RGS Proteins and Opioid Signaling (Regulator of G-protein Signaling (RGS) 단백질과 아편 신호 전달)

  • Kim, Kyung Seon;Palmer, Pamela Pierce;Kim, Ki Jun
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The regulators of the G protein signaling (RGS) proteins are responsible for the rapid acceleration of the GTPase-activity intrinsic to the heterotrimeric G protein alpha subunits. As GTPase-activating proteins (GAP), the RGS proteins negatively regulate the G-protein signals. Recently, the RGS proteins are known to be one of the important regulators of opioid signal transduction and the development of tolerance. The aim of this study was to review the recent discovery and understanding of the role of RGS proteins in opioid signaling and the development of tolerance. This information will be useful for medical personnel, particularly those involved in anesthesia and pain medicine, by helping them improve the effective use of opioids and develop new drugs that can prevent opioid tolerance.

Protein Engineering of an Artificial Intersubunit Disulfide Bond Linkage in Human Dihydrolipoamide Dehydrogenase

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.76-81
    • /
    • 1999
  • Dihydrolipoamide dehydrogenase (E3) belongs to the protein family of pyridine nucleotide-disulfide oxidoreductases, including glutathione reductase (GR). The two subunits of human GR are covalently linked by an intersubunit disulfide bond between the pair of the Cys-90 residues. The corresponding residue (Ser-79) in human E3 was substituted to Cys using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. About 40% of the mutants formed a spontaneous intersubunit disulfide bond linkage. This result implies that Ser-79 and possibly surrounding residues constitute one of the several intersubunit contact regions in human E3. It provides another good piece of evidence for the predicted high degree of the structural homology between human E3 and GR. Spectroscopic studies indicate conformational changes in the mutant.

  • PDF

A New Dimeric Lignan from the Stems of Willughbeia edulis

  • Nguyen, Hai Xuan;Do, Truong Nhat Van;Le, Tho Huu;Dang, Phu Hoang;Nguyen, Mai Thanh Thi;Nguyen, Nhan Trung
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.53-57
    • /
    • 2022
  • As part of our continued study on the chemical constituents of Willughbeia edulis stems, a new dimeric lignan named edulignan (1) was isolated from its EtOAc-soluble extract. Based on NMR spectroscopic interpretation, the planar structure of 1 has been suggested to have two 2-substituted 4-chromanone subunits with different stereochemical configurations. In addition, the MS/MS analysis of the products obtained by acid-catalyzed hydrolysis of 1 was supportive of its structure. Unfornatually, the new compound 1 did not show 𝛼-glucosidase inhibitory activity with an IC50 value > 250 𝜇M.

Quercetin Inhibits ${\alpha}3{\beta}4$ Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Shin, Tae-Joon;Kang, Ji-Yeon;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Quercetin mainly exists in the skin of colored fruits and vegetables as one of flavonoids. Recent studies show that quercetin, like other flavonoids, has diverse pharmacological actions. However, relatively little is known about quercetin effects in the regulations of ligand-gated ion channels. In the previous reports, we have shown that quercetin regulates subsets of homomeric ligand-gated ion channels such as glycine, 5-$HT_{3A}$ and ${\alpha}7$ nicotinic acetylcholine receptors. In the present study, we examined quercetin effects on heteromeric neuronal ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding bovine neuronal ${\alpha}3$ and ${\beta}4$ subunits. Treatment with acetylcholine elicited an inward peak current ($I_{ACh}$) in oocytes expressing ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor. Co-treatment with quercetin and acetylcholine inhibited $I_{ACh}$ in oocytes expressing ${\alpha}3{\beta}4$ nicotinic acetylcholine receptors. The inhibition of $I_{ACh}$ by quercetin was reversible and concentration-dependent. The half-inhibitory concentration ($IC_{50}$) of quercetin was $14.9{\pm}0.8\;{\mu}M$ in oocytes expressing ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor. The inhibition of $I_{ACh}$ by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor and this regulation might be one of the pharmacological actions of quercetin in nervous systems.

Enzymatic Studies on the α-Galactosidases from Soybean and Aspergillus niger (대두(大豆) 및 Aspergillus niger α-galactosidase의 효소학적(酵素學的) 연구(硏究))

  • Keum, Jong-Hwa;Oh, Man-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.49-73
    • /
    • 1991
  • To elucidate enzymatic properties of $\alpha$-galactosidases (EC3, 2, 1, 22) from germinated soybean and Aspergillus niger changes in the enzyme activities and oligosaccharide contents during germination of soybean were determined and $\alpha$-galactosidases from germinated soybean and wheat bran culture of Aspergillus niger were purified by ammonium sulfate fractionation, ion exchange chromatography and gel filtration. Their chemical and enzymatic properties were investigated and the results obtained were summarized as follows : 1. $\alpha$-Galactosidase activity of soybean was maximized when it was germinated at $25^{\circ}C$ for 120 hours. And raffinose and stachyose in soybean were decomposed completely after 96 hours and 120 hours of germination, respectively. 2. The highest level of $\alpha$-Galactosidase activity was obtained when Aspergillus niger was grown on wheat bran medium at $30^{\circ}C$ for 96 hours. 3. Soybean $\alpha$-galactosidase was purified by 6.6 fold by ammonium slufate fractionation, ion exchange chromatography on DEAE-Cellulose and Sephadex A-50., and gel filtration on Sephadex G-150. Its specific activity was 825 units/mg protein and the yield was 2.5% of the total activity of crude extracts. 4. Aspergillus niger $\alpha$-galactosidase was purified by 23.7 fold. Its specific activity was 1,229 units/mg protein and the yield was 14% of the total activity of wheat bran culture. 5. The purified $\alpha$-galactosidases of soybean and Aspergillus niger were found to be homogeneous by polyacrylamide gel electrophoresis and by HPLC. 6. Chemical properties of the purified $\alpha$-galactosidases were : 1) The soybean $\alpha$-galactosidase was monomeric and its molecular weight was estimated to be 30,000 by SDS-PAGE whereas the Aspergillus niger $\alpha$-galactosidase was a tetrameric glycoprotein which consisted of identical subunits with molecular weight of 28,000 each.

  • PDF

Production of Biological Active Single Chain Bovine LH and FSH

  • Min, K.S.;Kang, M.H.;Yoon, J.T.;Jin, H.J.;Seong, H.H.;Chang, Y.M.;Chung, H.J.;Oh, S.J.;Yun, S.G.;Chang, W.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.498-503
    • /
    • 2003
  • Luteinizing hormone as other glycoprotein hormones is characterized by a heterodimeric structure composed a common $\alpha$-subunit noncovalently linked to a specific $\beta$-subunit. The correct conformation of the heterodimer is important for efficient secretion, hormonal-specific post-translational modifications, receptor binding and signal transduction. To determine whether $\alpha$- and $\beta$- subunits can be synthesized as a single polypeptide chain (tethered-bLH and -bFSH) and also display biological activities, the tetheredbLH and -bFSH molecules were constructed and transfected into chinese hamster ovary (CHO-K1) cells. LH and FSH activities were assayed by using the human embryonic kidney (HEK) 293 cells expressing rat LH and FSH receptor genes. The tethered-bLH and - bFSH proteins were efficiently secreted and showed a similar activity to the dimeric bovine LH and FSH $\alpha$/$\beta$ wild type and native purified from bovine pituitary. The tethered-molecules can be permit development of potent new analogues that stimulate ovarian development. Taken together, a single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds. These data indicate the potentiality of the single chain approach to further investigate structurefunction relationships of LH and FSH.

Structural Studies on RUNX of Caenorhabditis elegans by Spectroscopic Methods

  • Son, Woo-Sung;Kim, Jong-Wan;Ahn, Hee-Chul;Park, Sung-Jean;Bae, Suk-Chul;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.1
    • /
    • pp.54-68
    • /
    • 2002
  • PEBP2/CBF (Polyomavirus Enhancer-core Binding Protein 2/Core Binding Factor), represents a new family of heterodimeric transcription factor. Those members play important roles in hematopoiesis and osteogenesis in mouse and human. PEBP2/CBF is a sequence-specific DNA binding protein. Each member of the PEBP2/CBF family of transcription factors is composed of two subunits, ${\alpha}$ and ${\beta}$. The evolutionarily conserved 128 amino acid region in ${\alpha}$ subunit has been called the Runt domain, which harbors two different activities, the ability to bind DNA and interact with the ${\beta}$ subunit. Recently, cDNA clones encoding the C. elegans Runt domain were isolated by screening a cDNA library. This gene was referred to run (Runt homologous gene). In this study, the basic experiments for the structural characterization of RUN protein were performed using spectroscopic methods. We have identified the structural properties of RUN using bioinformatics, CD and NMR. The limit temperature of the structural stability was up to 60$^{\circ}C$ with irreversible thermal process, and the structure of RUN seems to adopt ${\alpha}$ helices and one or more ${\beta}$ sheet or turn. The degree of NMR peak dispersion and intensity was increased by addition of glycine. Therefore, glycine could be used to alleviate the aggregation property of RUN in NMR experiment.

  • PDF

Identification of Two Novel BCKDHB Mutations in Korean Siblings with Maple Syrup Urine Disease Showing Mild Clinical Presentation

  • Ko, Jung Min;Shin, Choong Ho;Yang, Sei Won;Cheong, Hae Il;Song, Junghan
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Maple syrup urine disease (MSUD) is a disorder that involves the metabolism of branched chain amino acids, arising from a defect in branched-chain ${\alpha}$-keto acid dehydrogenase complex. Mutations have been identified in the BCKDHA, BCKDHB, or DBT genes, which encode different subunits of the BCKDH complex. Although encephalopathy and progressive neurodegeneration are its major manifestations, the severity of the disease may range from the severe classic type to milder intermediate variants. We report two Korean siblings with the milder intermediate MSUD who were diagnosed with MSUD by a combination of newborn screening tests using tandem mass spectrometry and family genetic screening for MSUD. At diagnosis, the patients' plasma levels were elevated for leucine, isoleucine, valine, and alloisoleucine, and branched-chain ${\alpha}$-keto acids and branched-chain ${\alpha}$-hydroxy acids were detected in their urine. BCKDHA, BCKDHB, and DBT analysis was performed, and two novel mutations were identified in BCKDHB. Our patients were thought to have the milder intermediate variant of MSUD, rather than the classic form. Although MSUD is a typical metabolic disease with poor prognosis, better outcomes can be expected if early diagnosis and prompt management are provided, particularly for milder forms of the disease.

Recognition of DNA by IHF : Sequence Specifficity Mediated by Residues That Do Not Contact DNA

  • Read, Erik K.;Cho, Eun Hee;Gardner, Jeffrey F.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.35-39
    • /
    • 2001
  • The Integration Host factor (IHF) of Escherichia coli is a small, basic protein that is required for a variety of functions including site-specific recombination, transposition, gene regulation, plasmid replication, and DNA packaging. It ,is composed of two subunits that are encoded by the ihfA ($\alpha$-subunit) and ihjB ($\beta$-subunit) genes. IHF binding sites are composed of three elements called the WATCAR, TTG, and poly (dAT) elements. We have characterized IHF binding to the H site of bacteriophage λ. We have isolated suppressors that bind to altered H' sites using a challenge phage selection. Two different suppressors were isolated that changed the adjacent $\alpha$P64 and $\alpha$K65 residues. The suppressors recognized both the wild-type site and a site with a change in the WATCAR element. Three suppressors were isolated at $\beta$-E44. These suppressors bound the wild-type and a mutant site with a T:A to A:T change (H44A) in the middle of the TIR element. Site-directed mutagenesis was used to make several additional changes at $\beta$E44. The wild-type and $\beta$E44D mutant could not bind the wild-type site but were able to bind the H44A mutant site. Other mutants with neutral, polar, or a positive charge at $\beta$E44 were able to repress both the wild-type and H44A sites. Examination of the IHF crystal structure suggests that the ability of the wild-type and $\beta$E44D proteins to discriminate between the T:A and A:T basepairs is due to indirect interactions. The $\beta$-E44 residue does not contact the DNA directly. It imposes binding specificity indirectly by interactions with residues that contact the DNA. Details of the proposed interactions are discussed.

  • PDF

Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-${\kappa}B$ and MAPK activation in RAW 264.7 cells

  • Yoon, Weon-Jong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.13-13
    • /
    • 2010
  • In the present study, the chemical constituents of Artemisia fukudo essential oil (AFE) were investigated using GC-MS. The major constituents were ${\alpha}$-thujone (40.28%), ${\beta}$-thujone (12.69%), camphor (6.95%) and caryophyllene (6.01%). We also examined the effects of AFE on the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-IL-$1{\beta}$ (IL-$1{\beta}$), and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Western blotting and RT-PCR analyses indicated that AFE has potent dose-dependent inhibitory effects on pro-inflammatory cytokines and mediators. We investigated the mechanism by which AFE inhibits NO and $PGE_2$ by examining the level of nuclear factor-${\kappa}B$ (NF-${\kappa}B$: p50 and p65) activation within the mitogen-activated protein kinase (MAPK: ERK, JNK and p38) pathway, which is an inflammation induced signal pathway in RAW 264.7 cells. AFE inhibited LPS-induced ERK, JNK and p38 phosphorylation. Furthermore, AFE inhibited the LPS-induced phosphorylation and degradation of $I{\kappa}B-{\alpha}$, which is required for the nuclear translocations of the p50 and p65 NF-${\kappa}B$ subunits in RAW 264.7 cells. Our results suggest that AFE might exert an anti-inflammatory effect by inhibiting the expression of pro-inflammatory cytokines. Such an effect is mediated by a blocking of NF-${\kappa}B$ activation which consequently inhibits the generation of inflammatory mediators in RAW 264.7 cells. AFE may be useful for treating inflammatory diseases.

  • PDF