Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 cells

Weon-Jong Yoon

Jeju Biodiversity Research Institute (JBRI), Jeju TECHNOPARK (JTP)

In the present study, the chemical constituents of *Artemisia fukudo* essential oil (AFE) were investigated using GC-MS. The major constituents were α -thujone (40.28%), β -thujone (12.69%), camphor (6.95%) and caryophyllene (6.01%). We also examined the effects of AFE on the production of nitric oxide (NO), prostaglandin E₂ (PGE₂), tumor necrosis factor- α (TNF- α), interleukin-IL-1 β (IL-1 β), and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Western blotting and RT-PCR analyses indicated that AFE has potent dose-dependent inhibitory effects on pro-inflammatory cytokines and mediators. We investigated the mechanism by which AFE inhibits NO and PGE₂ by examining the level of nuclear factor- κ B (NF- κ B: p50 and p65) activation within the mitogen-activated protein kinase (MAPK: ERK, JNK and p38) pathway, which is an inflammation induced signal pathway in RAW 264.7 cells. AFE inhibited LPS-induced ERK, JNK and p38 phosphorylation. Furthermore, AFE inhibited the LPS-induced phosphorylation and degradation of I κ B- α , which is required for the nuclear translocations of the p50 and p65 NF- κ B subunits in RAW 264.7 cells. Our results suggest that AFE might exert an anti-inflammatory effect by inhibiting the expression of pro-inflammatory cytokines. Such an effect is mediated by a blocking of NF- κ B activation which consequently inhibits the generation of inflammatory mediators in RAW 264.7 cells. AFE may be useful for treating inflammatory diseases.

Key words : Artemisia fukudo essential (AFE), Chemical composition, inflammation, nuclear factor-κB, MAPK.