• Title/Summary/Keyword: subterranean termite attack

Search Result 7, Processing Time 0.022 seconds

Color Change and Resistance to Subterranean Termite Attack of Mangium (Acacia mangium) and Sengon (Falcataria moluccana) Smoked Wood

  • HADI, Yusuf Sudo;MASSIJAYA, Muh Yusram;ABDILLAH, Imam Busyra;PARI, Gustan;ARSYAD, Wa Ode Muliastuty
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Indonesian log production is dominated by young trees harvested from plantation forests. The timber contains of sapwood and juvenile wood, which are not resistant to termite attack. Smoking treatment can enhance wood resistance to termite attack, but it also changes the color. Specimens of mangium (Acacia mangium) and sengon (Falcataria moluccana) wood were exposed for 1, 2, and 3 weeks to smoke produced from the pyrolysis of salam (Syzygium polyanthum) wood. The color change of the wood was measured using the CIELab method. In addition, wood specimens were exposed to subterranean termites (Coptotermes curvignathus Holmgren) under laboratory conditions. Untreated and imidacloprid-preserved wood samples were also prepared for comparison purposes. The results showed that the color of smoked wood differed from that of untreated wood, and the color change for sengon was greater than for mangium. In addition, the 1-week smoking period changed the wood color less than the 2- and 3-week periods, which did not differ. Imidacloprid-preserved wood had distinctive color changes compared to untreated wood. Untreated mangium wood had moderate resistance to subterranean termite attack (resistance class III), while sengon had very poor resistance (resistance class V). Salam wood smoke enhanced wood resistance to termite attack, and smoke treatment of 1 week for mangium and 2 weeks for sengon resulted in the wood becoming very resistant (resistance class I). Both types of smoked wood were more resistant to subterranean termite attack than imidacloprid-preserved wood (average class II resistance).

Resistance of Methyl Methacrylate-Impregnated Wood to Subterranean Termite Attack

  • Hadi, Yusuf Sudo;Massijaya, Muh. Yusram;Zaini, Lukmanul Hakim;Abdillah, Imam Busyra;Arsyad, Wa Ode Muliastuty
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.748-755
    • /
    • 2018
  • Timber from fast-growing tree species is susceptible to by biodeterioration attack, particularly subterranean termites. Impregnation with methyl methacrylate (MMA) potentially increases wood resistance to subterranean termite attack. Four wood species, namely sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), mangium (Acacia mangium), and pine (Pinus merkusii), were impregnated with MMA, and samples of untreated and imidacloprid-preserved wood were prepared for comparison purposes. Small stakes, sized 0.8 cm by 2 cm in cross section by 20 cm in the longitudinal direction, were inserted into the ground for 3 months, and the weight loss of each specimen was determined at the end of the test period. A factorial $4{\times}3$ completely randomized design was used for data analysis; the first factor was wood species, and the second factor was treatment. The results showed that MMA polymer loadings were 27.88%, 24.91%, 14.14%, and 17.81% for sengon, jabon, mangium, and pine, respectively, and amounts of imidacloprid retention were $7.56kg/m^3$, $5.98kg/m^3$, $5.34kg/m^3$, and $9.53kg/m^3$, respectively. According to an analysis of variance, wood species, treatment, and interaction of both factors significantly affected the weight loss of wood specimens. Mangium had the smallest weight loss, followed by pine, sengon, and jabon. MMA impregnation into the wood increased the resistance of wood samples to subterranean termite attack during in-ground testing, but the resistance level was lower than that of imidacloprid-preserved wood. Except for mangium wood, the MMA treatment did not significantly affect resistance.

Bioactivity of Cajuput Seedling n-Hexane Extract as an Attractant for Subterranean Termite Coptotermes curvignathus Holmgren (Isoptera: Rhinotermitidae)

  • Arinana ARINANA;Rama Aditya DHARMA;Rita Kartika SARI;Anindya Intan RAHMAWATI;Riki ANDIKA;Dodi NANDIKA
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.31-46
    • /
    • 2024
  • Subterranean termite attacks on cajuput (Melaleuca cajuputi) seedling roots were widespread in several of Java's Perum Perhutani Forest Management Units. This attack was suspected to be related to the chemical components of the cajunput seedling roots. This study was conducted to determine the bioactivity of cajuput seedling root extract as an attractant for the subterranean termite Coptotermes curvignathus Holmgren (Isoptera: Rhinotermitidae). The extraction process was performed according to ASTM D1108-96, and the extract was characterized using gas chromatography-mass spectrometry (GC-MS). Bioactivity testing of the extracts was carried out using attractiveness and no-choice feeding bioassays. The results showed that the average root extraction yield from cajunput seedlings was 4.94%. The attractiveness of the extract solutions at concentrations of 0.50%, 0.75%, and 1.00% were 45.33%, 62.00%, and 74.67%, respectively. The mortality rate of C. curvignathus termites ranged from 9.63% to 24.44%. Cajuput seedling root extract's lethal concentration 50 was 2.45% (non-toxic). GC-MS analysis showed that the extract contained linoleic acid, which has the potential to attract insects.

Termite Resistance of Impregnated Jabon Wood (Anthocephalus Cadamba Miq.) with Combined Impregnant Agents

  • Arsyad, Wa Ode Muliastuty;Basri, Efrida;Hendra, Djeni;Trisatya, Deazy Rachmi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.451-458
    • /
    • 2019
  • Jabon (Anthocephalus cadamba Miq.) is a fast-growing species that exhibits a lower natural resistance than that exhibited by the timber sourced from natural forests. Jabon's resistance to termite attack can be improved by impregnating its wood structure with poisonous organic materials. This study examined jabon's resistance to termite attack when impregnated with wood vinegar and an animal adhesive. The wood specimens were impregnated using sengon wood vinegar and an animal adhesive (8% and 10%, respectively) using a vacuum pressure machine. The specimens were tested for their resistance to subterranean and dry-wood termites according to Indonesian National Standard (SNI 7207-2014). The results denoted that jabon impregnated with wood vinegar and an animal adhesive concentration of at least 8% with the addition of 4% borate was effective to resist termite attacks. The impregnated jabon exhibited a lower weight loss and higher termite mortality when compared with those exhibited by the control specimens. Thus, the resistance class improved from class IV to class I.

Termite Resistance of The Less Known Tropical Woods Species Grown in West Java, Indonesia

  • Febrianto, Fauzi;Pranata, Andi Zaim;Septiana, Dea;Arinana, Arinana;Gumilang, Adiyantara;Hidayat, Wahyu;Jang, Jae-Hyuk;Lee, Seung-Hwan;Hwang, Won-Joung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.248-257
    • /
    • 2015
  • This research focused on the natural durability of twenty one lesser known tropical wood species planted in West Java, Indonesia against subterranean termite (Coptotermes curvignathus). It was observed that both heartwood and sapwood of Kiara payung (Filicium decipiens); heartwoods of Nangka (Arthocarpus heterophyllus), Mahoni (Swietenia macrophylla) and Simpur (Dillenia grandifolia); and sapwood of Bungur (Lagerstroemia speciosa) were rated as resistant (natural durability class II) according to Indonesian standard SNI 01.7207.2006 (BSN 2006). Both heartwood and sapwood of Salam (Syzigium polyanthum), Pasang (Lithocarpus sundaicus), Bisbul (Diospyros discolor), Rukam (Flacourtia rukam) and Trembesi (Samanea saman); heartwood of Puspa (Schima walichii), Bungur, Tanjung (Mimusops elangi) and Angsana (Pterocarpus indicus) were rated as moderately resistant (natural durability class III). Both heartwood and sapwood of Sungkai (Peronema canescens), Pine (Pinus merkusii), Mangium (Acacia mangium) and Afrika (Maesopsis eminii); sapwoods of Mahoni, Puspa and Tanjung were rated as poorly resistant (natural durability class IV). Both heartwood and sapwood of Agathis (Agathis dammara), Durian (Durio zibethinus), Ki sampang (Evodia latifolia) and Jabon (Anthocephalus cadamba); sapwoods of Nangka and Angsana were rated as very poorly resistant (natural durability class V). This reserach showed that woods with lower resistance against C. curvignathus attack (natural durability class IV and V) tend to have lower termite mortality values compared to woods with higher resistance against C. curvignathus attack (natural durability class II and III). Results of the study will provide some valuable information on termite resistance of twenty one lesser known tropical wood species planted in Indonesia.

Effect of Particle Pre-Treatment on Properties of Jatropha Fruit Hulls Particleboard

  • Iswanto, Apri Heri;Febrianto, Fauzi;Hadi, Yusuf Sudo;Ruhendi, Surdiding;Hermawan, Dede;Fatriasari, Widya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.155-165
    • /
    • 2018
  • The objective of the research was to evaluate the effect of particle pre-treatment on physical, mechanical, and durability of jatropha fruit hulls (JFH) particleboard. The pre-treatments included were immersing in cold water, hot water, and acetic acid solution. After each treatment, the particles were dried up to 3% moisture content. Urea-formaldehyde (UF) resin was used to fabricate particleboards with board size, thickness and density target of 25 cm by 25 cm, 0.80 cm, and $0.70g/cm^3$, respectively. Board pressed at $130^{\circ}C$ for 10 minutes, and $25kg/cm^2$ pressure. The evaluation of particleboard followed the JIS A 5908-2003. Whilist their resistance to subterranean termite test (mass loss, mortality, antifeedant value and feeding rate) refers to the Indonesian standard (SNI 01.7207-2006). The physical and mechanical properties of particleboards showed that all pre-treatments decreased the pH of particles. Overall, all particle immersing treatments resulted of better physical and mechanical properties of particleboard than those of untreated ones. The acetic acid treatment resulted the best physical and mechanical properties of particleboard. Based on the mass loss of JFH particleboard, hot water and acetic acid treated particleboards were classified into weak resistance to subterranean attack. The other two treatments were classified into very weak resistance. Hot water treated particleboard provided the highest mortality and antifeedant as much as 87.40% and 34.20%, respectively. Based on antifeedant classification, hot water treated particleboards were classified into moderately strong resistance, while other treatments were categorized into weak resistance. The lowest feeding rate value ($45.30{\mu}g/termite/day$) was attained by hot water treatment.

Study of Minimum Passage Size of Subterranean Termites (Reticulitermes speratus kyushuensis) (국내 흰개미(Reticulitermes speratus kyushuensis)의 최소 통과 직경 연구)

  • Kim, Sihyun;Lee, Sangbin;Lim, Ikgyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.188-197
    • /
    • 2020
  • Termites play an important role as decomposers of the forest ecosystem, while simultaneously causing enormous damage to wooden structures. Currently, two species of subterranean termites have been reported in Korea, and termite damage to historical wooden buildings is occurring nationwide due to climate change, forest fertility, and the locational characteristics of historical wooden buildings. Subterranean termites make their nests underground or inside timber. Termites move underground and access wooden structures through the lower parts of the buildings, adjacent to the ground. Once termites attack the wooden structures, it not only spoils the authenticity of cultural heritage structure, but also hampers structural stability due to the decrease in the strength of the material. Therefore, it is important to prevent termite damage before it occurs. Chemical treatments are mainly used in Korea to control and prevent the damage. In foreign countries, physical barriers are also used to prevent entry to wooden buildings, along with chemical treatments. Physical barriers involve installing nets or particles that termites cannot pass through in the lower part of the building, around the pipes, and between the edges of the building or exterior walls and interior materials. Advantages of a physical barrier are that it is an eco-friendly method, maintains long-term effect after installation, and does not require the use of chemical treatments. Prior to applying physical barriers, studies into the characteristics of termite species must be undertaken. In this study, we evaluated the minimum passage size that each caste of Reticulitermes speratus kyushuensis can move through. We found that workers, soldiers, and secondary reproductive termites were able to pass through diameters of 0.7mm, 0.9mm, and 1.1mm respectively. Head height of termites was an important factor in determining the minimum passing size. Results from the current study will be used as a basis to design the mesh size for physical barriers to prevent damage by termites in historical wooden buildings in Korea.