• Title/Summary/Keyword: substrate thickness

Search Result 1,915, Processing Time 0.033 seconds

Micro-LED Mass Transfer using a Vacuum Chuck (진공 척을 이용한 마이크로 LED 대량 전사 공정 개발)

  • Kim, Injoo;Kim, Yonghwa;Cho, Younghak;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2022
  • Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

Design of Wide band folded monopole slot antenna for 3G/4G/5G/Wi-Fi(dual band) services (3G/4G/5G/Wi-Fi(이중대역)용 광대역 모노폴 슬롯 안테나 설계)

  • Shin, Dong-Gi;Lee, Yeong-Min;Lee, Young-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • A modified folded monopole slot antenna for 3G WCDMA (1.91 ~ 2.17 GHz), 4G LTE (2.17 ~ 2.67 GHz), 3.5 GHz 5G (3.42 ~ 3.7 GHz) and Wi-Fi dual band (2.4 ~ 2.484 GHz / 5.15 ~ 5.825 GHz) was proposed for the first time. The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35 × 60 mm2. The measured impedance bandwidth of the proposed antenna is 2910 MHz(1.84 ~ 4.75 GHz) and 930 MHz(5.11 ~ 6.04 GHz), antenna gain in each frequency band is from 1.811 to 3.450 dBi. In particular, it was possible to obtain a commercially suitable omni-directional radiation pattern in all frequency bands of interest.

A Compact CPW-fed Antenna with Two Slit Structure for WLAN/WiMAX Operations (WLAN/WiMAX 대역에서 동작하는 두 개의 슬릿 구조를 갖는 CPW 급전방식 소형 안테나)

  • Kim, Woo-Su;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.759-766
    • /
    • 2022
  • In this paper, we propose a multi-band small antenna with CPW(Coplanar Waveguide) feeding structure WLAN(Wireless Local Area Network) and WiMAX (Worldwide Interoperability for Microwave Access) bands. The proposed antenna is designed two slit in the modified monopole type radiator and FR-4 substrate, which is thickness 1.0 mm, and the dielectric constant is 4.4. The size of proposed antenna is 15.1 mm⨯16.41 mm, and total size of proposed antenna is 17.5 mm⨯16.4 mm. From the fabrication and measurement results, From the fabrication and measurement results, bandwidths of 439 MHz (2.06 to 2.499 GHz), 840 MHz (3.31 to 4.25) and 1,315 MHz (5.23 to 6.545 GHz) were obtained on the basis of -10 dB impedance bandwidth. Also, 3D radiation pattern characteristics of the proposed antenna are displayed and measured gains 2.24 dBi, 2.83 dBi, and 2.0 dBi shown in the three frequency band, respectively.

A Study on the Design of Dual-Band Small Pacth Antenna using T-shaped Feeder and Spiral Structure (T자형 급전선과 스파이럴구조를 이용한 이중대역 소형패치 안테나 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.35-40
    • /
    • 2022
  • This paper proposes an antenna that is located outside the PCB substrate of an electronic product to enable wireless communication in the ISM band. The PCB designed the T-shaped OPEN-STUB power supply line to be miniaturized so that it does not interfere with parts or interfere with design. The characteristics of the antenna were confirmed in the 2.4GHz and 5.8GHz bands using a T-shaped stub feeder and a spiral structure. The size of the antenna is 5mm in width × 6.5mm in length, and the thickness of the PCB is 1.2T. As a result of measurement of the manufactured antenna, it was possible to obtain a return loss of -10dB or more at 2.4GHz and 5.8GHz. In the E-plane, the gain was -4.45 dBi, and in the H-plane, the gain was -1.05 dBi. Therefore, the proposed small antenna for wireless communication showed excellent performance.

Hydrogen Response Characteristics of Tantalum Oxide Layer Formed by Rapid Thermal Oxidation at High Temperatures (고온에서 급속열산화법으로 형성된 탄탈륨산화막의 수소응답특성)

  • Seong-Jeen Kim
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Since silicon having a band gap energy of about 1.12 eV are limited to a maximum operating temperature of less than 250 ℃, the sample with MIS structure based on the SiC substrate of wide-band gap energy was manufactured and the hydrogen response characteristics at high temperatures were investigated. The dielectric layer applied here is a tantalum oxide layer that is highly permeable to hydrogen gas and shows stability at high temperatures. It was formed by RTO at a temperature of 900 ℃ with tantalum. The thickness, depth profiles, and leakage current of the tantalum oxide layer were analyzed through TEM, SIMS, and leakage current characteristics. For the hydrogen gas response characteristics, the capacitance change characteristics were investigated in the temperature range from room temperature to 400 ℃ for hydrogen gas concentrations from 0 to 2,000 ppm. As a result, it was confirmed that the sample exhibited excellent sensitivity and a response time of about 60 seconds.

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.

Fabrication of an ultra-fine ginsenoside particle atomizer for drug delivery through respiratory tract (호흡기를 통한 약액 전달을 위한 진세노사이드 초미세입자 분무장치 제작)

  • Byung Chul Lee;Jin Soo Park;Woong Mo Yang
    • Journal of Convergence Korean Medicine
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Objectives: The purpose of this study is to fabricate an ultra-fine ginsenoside particle atomizer that can provide a new treatment method by delivering ginsenoside components that have a therapeutic effect on respiratory diseases directly to the lungs. Methods: We fabricated the AAO vibrating mesh by using the micromachining process. The starting substrate of an AAO wafer has a 350nm pore diameter with 50㎛ thickness. A photomask having several 5㎛ opening holes with a 100㎛ pitch was used to separate each nanopore nozzle. The photoresist structure was optimized to pattern the nozzle area during the lift-off process precisely. The commercial vibrating mesh was removed from OMRON's NE-U100 product, and the fabricated AAO vibrating mesh was installed. A diluted sample of 20mL with 30% red ginseng concentrate was prepared to atomize from the device. Results: As a result of liquid chromatography analysis before spraying the ginsenoside solution, ginsenoside components such as 20S-Rg3, 20R-Rg3, and Rg5 were detected. After spraying through the AAO vibrating mesh, ginsenosides of the same component could be detected. Conclusion: A nutrient solution containing ginsenosides was successfully sprayed through the AAO vibrating mesh with 350 nm selective pores. In particular, during the atomizing experiment of ginsenoside drug solution having excellent efficacy in respiratory diseases, it was confirmed that atomizing through the AAO vibrating mesh while maintaining most of the active ingredients was carried out.

Compact 4-bit Chipless RFID Tag Using Modified ELC Resonator and Multiple Slot Resonators (변형된 ELC 공진기와 다중 슬롯 공진기를 이용한 소형 4-비트 Chipless RFID 태그 )

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.516-521
    • /
    • 2022
  • In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.