Browse > Article
http://dx.doi.org/10.12673/jant.2022.26.6.516

Compact 4-bit Chipless RFID Tag Using Modified ELC Resonator and Multiple Slot Resonators  

Junho Yeo (School of Artificial Intelligence, Daegu University)
Jong-Ig Lee (Department of Electronics Engineering, Dongseo University)
Abstract
In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.
Keywords
Chipless RFID; Interdigital-capacitor; Modified ELC resonator; Multiple slot resonators; Radar cross section;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd ed. Hoboken, NJ: Wiley-Blackwell, pp. 1-13, 2010.
2 J. Lee, "Chipless tag technology," The Proceedings of the Korean Institute of Electromagnetic Engineering and Science, Vol. 15, No. 2, pp. 54-63, Apr. 2004.
3 C. Herrojo, F. Paredes, J. Mata-Contreras, and F. Martin, "Chipless-RFID: A review and recent developments," Sensors, Vol. 19, No. 15, p. 3385, 2019.
4 I. Jalaly and D. Robertson, "RF barcodes using multiple frequency bands," IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, pp. 139-141, Jun. 2005.
5 A. Vena, E. Perret and S. Tedjini, "A fully printable chipless RFID tag with detuning correction technique," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 4, pp. 209-211, Apr. 2012.   DOI
6 A. Vena, E. Perret, and S. Tedjini, "High-capacity chipless RFID tag insensitive to the polarization," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, pp. 4509-4515, Oct. 2012.   DOI
7 S. Shrestha and N. C. Karmakar, "Analysis of real-world implementation challenges of chipless RFID tag," IET Microwave and Antennas Propagation, Vol. 13, No. 9, pp. 1318-1324, 2019.   DOI
8 M. A. Islam, Y. Yap, N. Karmakar, and A. K. M. Azad, "Orientation independent compact chipless RFID tag," 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Nice, France, pp. 137-141, Nov. 2012.
9 E. M. Amin, N. C. Karmakar, B. W. Jensen, "Fully printable chipless RFID multi-parameter sensor," Sensors and Actuators A: Physical, Vol. 248, pp. 223-232, Sep. 2016.   DOI
10 T. Athauda and N. Karmakar, "Chipped versus chipless RF identification: A comprehensive review," IEEE Microwave Magazine, Vol. 20, No. 9, pp. 47-57, Sep. 2019.   DOI
11 D. M. Dobkin, RF in RFID: Passive UHF RFID in Practice, Amsterdam, The Netherlands: Elsevier, 2008.
12 J. Yeo, J.-I. Lee, and Y. Kwon, "Humidity-sensing chipless RFID tag with enhanced sensitivity using an interdigital capacitor structure," Sensors, Vol. 21, No. 19, p. 6550, 2021.