• Title/Summary/Keyword: substrate model

Search Result 801, Processing Time 0.026 seconds

A Study on the Ink Transfer Using the Roughness and Substrate Energy of Substrate in Roll to Roll Printing Systems (롤투롤 인쇄 시스템에서의 기판 소재의 거칠기와 표면에너지를 이용한 잉크 전이에 대한 연구)

  • Shin, Kee-Hyun;Kim, Ho-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • An ink transfer is modeled and experimentally verified using roll-to-roll electric direct gravure printing process. The ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and experimented by the electric printing machine in FDRC for the relations of the maximum ink transfer rates to the printing pressure, the operating speed, the operating tension, the surface roughness of substrates, and the contact angle between substrate and silver ink. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the physical parameter in a printing process and contact angle between substrates and ink. Numerical simulations and experimental studies were carried out to verify performances of the proposed ink transfer model. Results showed that the proposed ink transfer model was effective for the prediction of the amount of transferred ink to the substrate in a direct gravure printing systems.

A Simple Model Parameter Extraction Methodology for an On-Chip Spiral Inductor

  • Oh, Nam-Jin;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.115-118
    • /
    • 2006
  • In this letter, a simple model parameter extraction methodology for an on-chip spiral inductor is proposed based on a wide-band inductor model that incorporates parallel inductance and resistance to model skin and proximity effects, and capacitance to model the decrease in series resistance above the frequency near the peak quality factor. The wide-band inductor model does not require any frequency dependent elements, and model parameters can be extracted directly from the measured data with some curve fitting. The validity of the proposed model and parameter extraction methodology are verified with various size inductors fabricated using $0.18\;{\mu}m$ CMOS technology.

  • PDF

Substrate Interactions in the Biodegradation of Volatile Organic Compounds by a Yeast Strain (Yeast에 의한 휘발성 유기화합물 분해에 있어서의 기질상호관계 해석)

  • Jang, Hyun Sup;Jeong, MI Young;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2008
  • Biological removal capacities for volatile organic compounds (VOCs) were determined using a yeast strain, Candida tropicalis. In this study, VOCs including toluene, benzene, p-xylene, and styrene as single substrates or mixtures were tested in the batch culture of the yeast strain. In addition, a kinetic model was applied to evaluate substrate interactions between the VOCs. The yeast strain was able to biodegrade each VOC effectively as a growth substrate, implying it could applied to wide range of VOCs. When the yeast strain was subjected to VOCs in mixtures, the biodegradation rate of one substrate were either increased (stimulated) or decreased (inhibited) by the presence of the others. Both benzene and toluene were inhibited by the other VOCs, and substrate interaction parameters estimated in the model indicated that styrene was the strongest inhibitor for the benzene and toluene biodegradation. Meanwhile, the biodegradation of p-xylene and styrene was stimulated by the presence of either benzene or toluene. The biodegradation rate of p-xylene was significantly increased especially by the presence of toluene, and the styrene biodegradation was enhanced greatly by the benzene addition. The results of the substrate interaction by the yeast strain suggest that the biodegradation rates for the VOCs in mixtures should be carefully evaluated. Furthermore, the competitive inhibition coefficient could be applied as a useful index to determine the substrate interaction

Molecular Dynamics Study on Behaviors of Liquid Cluster with Shape and Temperature of Nano-Structure Substrate (나노구조기판의 형상 및 온도변화에 따른 액체 클러스터의 거동에 대한 분자동역학적 연구)

  • Ko, Sun-Mi;Jeong, Heung-Cheol;Shibahara, Masahiko;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • Molecular dynamic simulations have been carried out to study the effect of the nano-structure substrate and its temperature on cluster laminating. The interaction between substrate molecules and liquid molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the liquid cluster on nano-structure substrate. In the present model, the Lennard-Jones potential is applied to mono-atomic molecules of argon as liquid and platinum as nano-structure substrate to perform simulations of molecular dynamics. The effect of wettability on a substrate was investigated for the various beta of Lennard-Jones potential. The behavior of the liquid cluster and nano-structure substrate depends on interface wettability and function of molecules force, such as attraction and repulsion, in the collision progress. Furthermore, nano-structure substrate temperature and beta of Lennard-Jones potential have effect on the accumulation ratio. These results of simulation will be the foundation of coating application technology for micro fabrication manufacturing.

  • PDF

Optical Simulation Study on the Effect of Diffusing Substrate and Pillow Lenses on the Outcoupling Efficiency of Organic Light Emitting Diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • The effect of diffusing substrate and pillow lenses on the outcoupling efficiency of organic light-emitting diodes (OLEDs) was studied by optical simulation based on the point-dipole model. The diffusing substrate included Mie scatterers by which the condition of total internal reflection could be broken. The finite-difference time-domain method was used to obtain the intensity distribution on the transparent electrode of an OLED, which was used as a light source to carry out a ray-tracing simulation of the OLED and the diffusing substrate. It was found that the outcoupling efficiency of the OLED was sensitive to the thickness of organic layers and could be increased by 21.0% by adopting a diffusing substrate in which Mie scatterers whose radius was $2.0{\mu}m$ were included at the density of $10^7mm^{-3}$ and by 65.5% by forming one pillow lens with the radius of 2 mm on the front surface of the glass substrate. This study revealed that the outcoupling efficiency could be improved by adopting diffusing substrate and pillow lenses along with the optimization of the thickness of each layer in the OLED.

An Analytical Models for Substrate Current and Gate Current Using Modified Lateral Electric Field Model for Surface-Channel PMOSFET's (수정된 수평 전개 모델을 이용한 SC-PMOSFET의 기판 전류와 게이트 전류의 해석적 모델)

  • 양광선;박종태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.48-53
    • /
    • 1994
  • In this paper, we present the analytical models for substrate current and gate current of stressed SC-PMOSFET using the change of the lateral electric field distribution due to the trapped electron. Calculated Isub and Ig of stressed SC-PMOSFET agree with experimental data. Our model can be very useful explaining the logarithmic time dependence of Isub and Ig. and also the trapped electron distribution.

  • PDF

Collision Behavior of Molten Metal Droplet with Solid Surface (용융금속 액적의 고체표면 충돌거동)

  • 양영수;손광재;강대현
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.55-63
    • /
    • 2000
  • This paper presents a study of the solder bumping process. The theoretical model, based on the variational principle instead of solving the Navier-Stokes equation with moving boundaries, was developed to considered the energy dissipation in semi-solid phase and the approximate solidification time of the molten metal droplet. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of initial droplet temperature, substrate metal and initial substrate temerature.

  • PDF

Macro Modeling of MOS Transistors for RF Applications (RF 적용을 위한 MOS 트랜지스터의 매크로 모델링)

  • 최진영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.54-61
    • /
    • 1999
  • We suggested a macro medel for MOS transistors, which incorporates the distributed substrate resistance by using a method which utilizes external diodes on SPICE MOS model. By fitting the simulated s-parameters to the measures ones, we obtained a model set for the W=200TEX>$\mu\textrm{m}$ and L=0.8TEX>$\mu\textrm{m}$ NMOS transistor, and also analyzed the effects of distributed substrate resistance in the RF range. By comparing the physical parameters calculated from simulated s-parameters such as ac resistances and capacitances with the measured ones, we confirmed the validity of the simulation results. For the frequencies below 10GHz, it seems appropriated to use a simple macro model which utilizes the existing SPICE MOS model with junction diodes, after including one lumped resistor each for gate and substrate nodes.

  • PDF

Characteristics of the Resonance and Impedance of Parallel Plates due to the Embedded Metamaterial Substrate (Metamaterial 기판에 의한 평행평판 공진 및 임피던스 특성)

  • Kahng, Sung-Tek
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.41-46
    • /
    • 2008
  • This paper conducts the research on the variation in the characteristics of the resonance and impedance of the metallic parallel plates due to the replacement of the normal dielectric substrate by the metamaterial. The ENG(${\epsilon}<0$), MNG(${\mu}<0}$) and DNG(${\epsilon},{\mu}<0$) types of metamaterial as well as the DPS(Double Positive) material are taken into consideration a full-wave modal analysis method known for accurate computation, as the SRR-kind of Lorentz model for permittivity and metal wire-periodic array-kind of Drude model for permeability, and the behaviors of parallel plates' resonance mode and impedance are observed. Based upon the observation, the design guidelines for the substrate can be addressed regrading how to suppress the parallel plates' spurious resonance modes that degrade the quality of the electronic equipment.

2D-QSAR Analyses on the Binding Affinity Constants of Tetrahydropyrane and Tetrahydrofurane Analogues against Bovine Odorant Binding Protein and Predicted of High Active Molecules (Bovine Ordorant Binding Protein에 대한 Tetrahydropyrane 및 Tetrahydrofurane 유도체들의 결합 친화력 상수에 관한 2D-QSAR 분석과 고활성 분자의 예측)

  • Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.119-123
    • /
    • 2009
  • The two dimensional quantitative structure-activity relationships (2D-QSARs) models concerning the binding affinity constants ($p[Od.]_{50}$) between 2-cyclohexyltetrahydropyrane and 2-cyclohexyltetrahydrofurane analogues as substrates, and bovine odorant binding protein (bOBP) as receptor were derived by multiple regression analyses method and discussed. The statistical quality of the optimized 2D-QSAR model (5) was good (r=0.907). From the model, the binding affinity constants ($p[Od.]_{50}$) were dependent upon the optimal value ($(TL)_{opt.}$=2.737) of total lipole (TL) of substrate molecules. Based on these findings, the high active compounds predicted by optimized 2D-QSAR model (5) were 2-(dimethylcyclohexyl)tetrahydropyrane molecule and their isomer molecules. The binding affinity constants regarding bOBP of the tetrahydrofuryl-2-yl family compounds were dependent upon the hydrophobicity (logP) of whole substrate molecules. In any case of porcine odorant-binding proteins (pOBP), the constants were dependent upon the hydrophobicity (${\pi}x={\log}P_X-{\log}P_H$) of substituents (R) in substrate molecules. Also, from the optimal values of hydrophobic constant, the hydrophobicity for bOBP influenced ca. twice time bigger (bOBP>pOBP) than that for pOBP.