Browse > Article
http://dx.doi.org/10.4014/jmb.1206.06015

Kinetic Studies of Alkaline Protease from Bacillus licheniformis NCIM-2042  

Bhunia, Biswanath (Department of Biotechnology, National Institute of Technology)
Basak, Bikram (Department of Biotechnology, National Institute of Technology)
Bhattacharya, Pinaki (Department of Chemical Engineering, Heritage Institute of Technology)
Dey, Apurba (Department of Biotechnology, National Institute of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1758-1766 More about this Journal
Abstract
An extensive investigation was carried out to describe the kinetics of cell growth, substrate consumption, and product formation in the batch fermentation using starch as substrate. Evaluation of intrinsic kinetic parameters was carried out using a best-fit unstructured model. A nonlinear regression technique was applied for computational purpose. The Andrew's model showed a comparatively better $R^2$ value among all tested models. The values of specific growth rate (${\mu}_{max}$), saturation constant ($K_S$), inhibition constant ($K_I$), and $Y_{X/S}$ were found to be 0.109 $h^{-1}$, 11.1 g/l, 0.012 g/l, and 1.003, respectively. The Leudeking-Piret model was used to study the product formation kinetics and the process was found to be growth-associated. The growth-associated constant (${\alpha}$) for protease production was sensitive to substrate concentration. Its value was fairly constant up to a substrate concentration of 30.8 g/l, and then decreased.
Keywords
Cell growth; fermentation; kinetics; modeling; simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rajendran, A. and V. Thangavelu. 2008. Evaluation of various unstructured kinetic models for the production of protease by Bacillus sphaericus MTCC511. Eng. Life Sci. 8: 179-185.   DOI   ScienceOn
2 Rao, S. Ch., T. Sathish, M. Mahalaxmi, G. S. Laxmi, R. S. Rao, and R. S. Prakasham. 2008. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. J. Appl. Microbiol. 104: 889-898.   DOI   ScienceOn
3 Rao, C. S., T. Sathish, P. Brahamaiah, T. P. Kumarb, and R. S. Prakashama. 2009. Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics. J. Chem. Technol. Biotechnol. 84: 302-307.   DOI   ScienceOn
4 Rao, R. S., R. S. Prakasham, K. K. Prasad, S. Rajesham, P. N. Sarma, and L. V. Rao. 2004. Xylitol production by Candida sp.: Parameter optimization using Taguchi approach. Process Biochem. 39: 951-956.   DOI   ScienceOn
5 Shah, K., K. Mody, J. Keshri, and B. Jha. 2010. Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. J. Molec. Catal. B Enz. 67: 85-91.   DOI   ScienceOn
6 Shuler, M. L. and F. Kargi. 2008. Bioprocess Engineering: Basic Concepts. Practice Hall of India Private Limited, New Delhi.
7 Srinivasulu, B., R. S. Prakasham, J. Annapurna, S. Srinivas, P. Ellaiah, and S. V. Ramakrishna. 2002. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 38: 593-598.   DOI   ScienceOn
8 Subba Rao, C., S. S. Madhavendra, R. Sreenivas Rao, P. J. Hobbs, and R. S. Prakasham. 2008. Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized Bacillus circulans (MTCC 6811) using overall evaluation criteria. Appl. Biochem. Biotechnol. 150: 65-83.   DOI   ScienceOn
9 Underkoefler, L. A. and R. J. Hickey. 1954. Industrial Fermentations, Vol. 1. Chemical Publishing Co., New York.
10 Vazquez, J. A. and M. A. Murado. 2008. Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. J. Chem. Technol. Biotechnol. 83: 91-96.   DOI   ScienceOn
11 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
12 Divyashree, M. S., N. K. Rastogi, and T. R. Shamala. 2009. A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. N Biotechnol. 26: 92-98.   DOI   ScienceOn
13 Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46(Suppl 2): S33-S50.
14 Gaden, E. L. 2000. Fermentation process kinetics. Biotechnol. Bioeng. 67: 629-635.   DOI   ScienceOn
15 Griffin, H. L., R. V. Greene, and M. A. Cotta. 1992. Isolation and characterization of an alkaline protease from the marine shipworm bacterium. Curr. Microbiol. 24: 111-117.   DOI   ScienceOn
16 Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.   DOI   ScienceOn
17 Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34.   DOI   ScienceOn
18 Jamuna, R., N. Saswathi, R. Sheela, and S. V. Ramakrishna. 1993. Synthesis of cyclodextrin glucosyl transferase by Bacillus cereus for the production of cyclodextrins. Appl. Biochem. Biotechnol. 43: 163-176.   DOI   ScienceOn
19 Kono, T. and T. Asai. 1969. Kinetics of fermentation processes. Biotechnol. Bioeng. 11: 293-321.   DOI   ScienceOn
20 Kumar, N., P. S. Monga, A. K. Biswas, and D. Das. 2000. Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08. Int. J. Hydrogen Energy 25: 945-952.   DOI   ScienceOn
21 Liu, J. Z., L. P. Weng, Q. L. Zhang, H. Xu, and L. N. Ji. 2003. A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem. Eng. J. 14: 137-141   DOI   ScienceOn
22 Luedeking, R. and E. L. Piret. 2000. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnol. Bioeng. 67: 636-644.   DOI   ScienceOn
23 Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371-394.   DOI   ScienceOn
24 Nakamura, N. and K. Horikoshi. 1976. Characterization and some cultural conditions of a cyclodextrin glycosyltransferase-producing alkalophilic Bacillus sp. Agric. Biol. Chem. 40: 753-757.   DOI
25 Park, T. H., H. D. Shin, and Y. H. Lee. 1999. Characterization of the ${\beta}$-cyclodextrin glucanotransferase gene of Bacillus firmus var. alkalophilus and its expression in E. coli J. Microbiol. Biotechnol. 9: 811-819.
26 Prakasham, R. S., Ch. Subba Rao, R. Sreenivas Rao, and P. N. Sarma. 2007. Enhancement of acid amylase production by an isolated Aspergillus awamori. J. Appl. Microbiol. 102: 204-211.   DOI   ScienceOn
27 Prakasham, R. S., Ch. Subba Rao, and P. N. Sarma. 2006. Green gram husk - an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454.   DOI   ScienceOn
28 Andrews, J. F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 702-723.
29 Bergmeyer, H. U. and E. Bernt. 1974. Methods of Enzymatic Analysis, pp. 1205-1212. 2nd Ed. Academic Press, New York.
30 Anwar, A. and M. Saleemuddin. 2000. Alkaline protease from Spilosoma obliqua: Potential applications in bio-formulations. Biotechnol. Appl. Biochem. 31: 85-89.   DOI   ScienceOn
31 Bhunia, B., K. K. Behera, A. Baquee, and H. P. Sharma. 2010. Optimization of alkaline protease activity from Bacillus subtilis 2724 by response surface methodology (RSM). Int. J. Biol. Sci. Eng. 1: 158-169.
32 Bhunia, B. and A. Dey. 2012. Statistical approach for optimization of physiochemical requirements on alkaline protease production from Bacillus licheniformis NCIM 2042. Enzyme Res. 2012: 905804.
33 Bhunia, B., D. Dutta, and S. Chaudhuri. 2010. Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM-2042. Not. Sci. Biol. 2: 56-59.
34 Bhunia, B., D. Dutta, and S. Chaudhuri. 2011. Extracellular alkaline protease from Bacillus licheniformis NCIM-2042: Improving enzyme activity assay and characterization. Eng. Life Sci. 11: 207-215.   DOI   ScienceOn