• Title/Summary/Keyword: substrate effects

Search Result 2,024, Processing Time 0.035 seconds

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Factors to Affect the Growth of Filamentous Periphytic Algae in the Artificial Channels using Treated Wastewater (하수처리수를 이용한 인공수로에서 사상성 부착조류의 성장에 영향을 미치는 요인들)

  • Park, Ku-Sung;Kim, Ho-Sub;Kong, Dong-Soo;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.100-109
    • /
    • 2006
  • This study evaluated the effects of water velocity, substrates, and phosphorus concentrations on the growth of filamentous periphytic algae (FPA) in the two types of artificial channel systems using treated wastewater. Controlled parameters included 5 ${\sim}$ 15 cm $s^{-1}$ for the water velocity; 10 and 20 mm wire meshes, natural fiber net, gravel and tile for the substrates: and 0.05 ${\sim}$ 1.0 mgP $L^{-1}$ for the P concentration. Algal growth rate of FPA was compared using both chi. a and dry weight change with time. Under the controlled water velocity range, the growth of FPA increased with the velocity, but the maximum growth rate was shown in the velocity of 10 cm $s^{-1}$. The substrate that showed the maximum growth of FPA differed between the artificial channel and indoor channel, due to the influence of suspended matters which caused the clogging of the meshed substrates. Under the controled range of P concentration, the growth rates of all three FPA species (Spirogyra turfosa, Oedogonium fovelatum, Rhizoclonium riparium) increased with the P increase, but they showed the differential growth rates among different P concentrations. The results of this study suggest that under the circumstance having an large amount of nutrients FPA develop the biomass rapidly and that even a little increase over the threshold velocity causes the detachment of filamentous periphytic algae. Thus, FPA dynamics in eutrophic streams, such as those receiving treated wastewater, seem to be sensitive to the water velocity. On the other hand, detached algal filaments could deteriorate water quality and ecosystem function in receiving streams or down-stream, and thus they need to be recognized as an important factor in water quality management in eutrophic streams.

Analysis of the Factors Affecting Anaerobic Thermophilic Digestibility of Food Wastes (음식물쓰레기의 고온 혐기성 소화도에 미치는 요소에 대한 분석)

  • Kim, Do Hee;Hyun, Seung Hoon;Kim, Kyung Woong;Cho, Jaeweon;Kim, In S.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.130-139
    • /
    • 2000
  • Serial basic tests were conducted for the determination of fundamental kinetics and for the actual application of kinetic parameter to food waste digestion with precise measurement of methane production under a thermophilic condition. The effects of food particle size, sodium ion concentration, and volatile solid (VS) loading rate on the anaerobic thermophilic food waste digestion process were investigated. Results of serial test for the determination of fundamental kinetic coefficients showed the value of k (maximum substrate utilization rate coefficient) and KS (half-saturation coefficient) as $0.24hr^{-1}$ and $700mg/{\ell}$, respectively, for non-inhibiting organic loading range. No inhibition effect was shown until $5g/{\ell}$ of sodium ion concentration was applied to a serum bottle reactor. However, the volume of methane gas was decreased gradually when the concentrations of more than $5g/{\ell}$ of sodium ion applied. All sizes of food waste particle showed the same constants (A : 0.45) but the maximum substrate utilization rate constant ($k_{HA}$) was inversely proportional to particle size. As an average particle size increased from 1.02 mm to 2.14 mm, $k_{HA}$ decreased from $0.0033hr^{-1}$ to $0.0015hr^{-1}$. The result reveals that particle size is one of the most important factors in anaerobic food waste digestion. There was no inhibition effect of sodium ion when VS loading rate was $30g/{\ell}$. And maximum injection concentration of VS loading rate was determined about $40g/{\ell}$.

  • PDF

The Manufactures and Characteristics of Chestnut Yoghurt (The Volatile Flavour Compounds and the Sensory Properties of Chestnut Yoghurt) (밤 Yoghurt의 제조와 특성 (밤 Yoghurt의 휘발성 향미성분 및 관능적 특성))

  • Shin, Hyeon-Su;Kim, Sang-Beom;Kim, Gi-Yeong;Ryu, Jin-Su;Lim, Jong-U
    • Journal of Dairy Science and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.4-12
    • /
    • 2001
  • The effects of the addition of raw and dried chestnut with levels of 1%($T_1$),2%($T_2$),3%($T_3$) and 4%($T_4$) in skim milk substrate on the volatile flavour compounds and sensory properties of yoghurt fermented with the mixed cultures of YC-380 and ABT-4 during fermentation and storage period were investigated. In all treatments, the contents of acetaldehyde and acetone were detected at 2 hrs. and 1 hr. of fermentation, respectively and decreased with the storage period. The contents of ethanol and diacetyl were detected in all treatments at 3 hrs. and 4 hrs. of fermentation, respectively and increased significantly(p<0.05) with the storage period. The contents of volatile flavour compounds of treatments were increased gradually with decreasing the level of addition of raw and dried chestnut, and increased in order of fermented with YC-380 and ABT-4. The contents of volatile flavour compounds of raw chestnut yoghurt were slightly high compared to those of dried chestnut yoghurt. The taste, flavour and texture of $T_1$ were slightly higher than those of all treatments immediately after fermentation and during the storage period. The scores of sensory evaluation of treatments except $T_1$ were lowered significantly(p<0.05) with increasing the level of addition of raw and dried chestnut. The quality of both of flavour and texture, and taste were superior to chestnut yoghurt fermented with YC-380 and ABT-4, respectively. Generally the scores of sensory evaluation of dried chestnut yoghurt were slightly high compared to those of raw chestnut yoghurt. From the results mentioned above, the addition of raw and dried chestnut at 1%(w/v) level in skim milk substrate were suitable for volatile flavour compounds and sensory property of raw and dried chestnut yoghurt.

  • PDF

Enzymatic Hydrolysis of Rice Straw, a Lignocellulosic Biomass, by Extracellular Enzymes from Fomitopsis palustris (Fomitopsis palustris의 균체 외 효소에 의한 볏짚 당화에 관한 연구)

  • Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Kim, Tae-Jong;Kim, Nam-Hun;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-273
    • /
    • 2010
  • In the enzymatic hydrolysis of rice straw and wood meals using extra-cellular enzymes from Fomitopsis palustris, key factors which enhanced the sugar conversion yield were investigated in this work, such as enzyme production and enzyme reaction conditions, surfactant effects, and the surface structure of substrates. F. palustris cultured with softwood mixture produced 12.0 U/$m{\ell}$ for endo-${\beta}$-1,4-gulcanase (EG), 116.68 U/$m{\ell}$ for ${\beta}$-glucosidase (BGL), 18.82 U/$m{\ell}$ for cellobiohydrolase (CBH), and 13.33 U/$m{\ell}$ for ${\beta}$-xylosidase (BXL). These levels of BGL, CBH, and BXL activities were two to four folds more than enzyme activities of F. palustris cultured with rice straw. The optimum reaction conditions of cellulase-RS which produced by F. palustris with rice straw and cellulase-SW which produced by F. palustris with softwood mixture were pH 5.0 at $45^{\circ}C$ and pH 5.0 at $50^{\circ}C$, respectively. The sugar conversion yield of cellulase-SW had the highest value of $40.6{\pm}0.6%$ within 72 h when rice straw was used as substrate. By adding 0.1% Tween 20 (w/w-substrate), the sugar conversion yield of rice straw was increased to 44%, which was about four fifths sugar conversion yield of commercial enzyme, Celluclast 1.5L (Novozyme A/S). A low crystallinity and an intensive fibril surface observed by the scanning electron microscope may explain the high sugar conversion yield of rice straw.

A Study on the Effect of O$_2$ annealing on Structural, Optical, and Electrical Characteristics of Undoped ZnO Thin Films Deposited by Magnetron Sputtering (산소 어닐링이 마그네 트론 스퍼터링으로 증착된 undoped ZnO박막의 구조적, 광학적, 전기적 특성에 미치는 영향에 대한 연구)

  • Yun, Eui-Jung;Park, Hyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper, the effects of annealing conditions on the structural ((002) intensity, FWHM, d-spacing, grain size, (002) peak position), optical (UV peak, UV peak position) and electrical properties (carrier concentrations, resistivity, mobility) of ZnO films were investigated. ZnO films were deposited onto SiO$_2$/si substrates by RF magnetron sputtering from a ZnO target. The substrate was not heated during deposition. ZnO films were annealed in temperature ranges of $500\sim650^{\circ}C$ in the O$_2$ flow for 5$\sim$20 min. The film average thicknesses were in the range of 291 nm. The surface morphologies and structures of the samples were characterize by SEM and XRD, respectively. The optical properties were evaluated by photoluminescence (PL) measurement at room temperature (RT) using a He-Cd 325 nm laser. As the annealing temperature and time vary, the following relations were also observed: (1) proportional relationships among UV intensity (002) intensity, and grain size exist, (2) UV intensity is inversely proportional to FWHM, (3) there is no special relationship between UV intensity and electron carrier concentrations, (4) d-spacing is inversely proportional to (002) peak position, (5) UV peak position in the range of 3.20$\sim$3.24 eV means that ZnO films have a n-type conductivity which was consistent with that obtained from the electrical property, (6) the optimal conditions for the best optical and structural characteristics were found to be oxygen fraction, (O$_2$/(O$_2$+Ar)) of 0.2, RF power of 240W, substrate temperature of RT, annealing condition of 600$^{\circ}C$ for 20 min, and sputtering pressure of 20 mTorr.

The Effect of Environmental Factors on the Hydrolysis Characteristics of Lipase (환경인자가 리파제의 가수분해 특성에 미치는 영향)

  • Park, Geon-Gyu;Kim, Eun-Gi;Heo, Byeong-Gi
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.511-516
    • /
    • 1999
  • The effects of environmental and compositon factors, such as reaction time, metal ions, pH, agitation speed, the weight ratio of water to oil, and the weight of enzyme, on the hydrolysis of oils by Lipase-OF were investigated. In case of oils with low melting point, the optimum temperature of hydrolysis were the enzyme activity was maximum was 37$^{\circ}C$. However, when the melting temperature was higher than 4$0^{\circ}C$, the optimum temperature was around the fusion temperature. The activity of Lipase-OF decreased very rapidly with increase of temperature in the range of higher than 45$^{\circ}C$ and the activity perished above $65^{\circ}C$. The effect of agitation speed was investigated from 150 to 650 rpm. The hydrolysis of oils increased as the agitation speed increased up to 350 rpm, but it did not increase any more above 350 rpm. The weight ratio of water to oil was changed from 1 : 9 to 9 : 1 for the investigation of the effect on the hydrolusis. The weight ratio for maximum hydrolysis was 1 : 1. $Ca^{2+}\;and\;Mg^{2+}$ among various metal ions had some effect on the stimulation of hydrolysis. The optimum concentration of the ions was about 100ppm at which the hydrolysis increased, compared with that of distilled water, by 2 to 3%. The Optimum pH of Lipase-OF was 7. The hydrolysis decreased as the pH decreased as the pH decreased and also decreased as the pH increased. The content of enzyme affected the hydrolysis of oil. The hydrolysis increased with the content of Lipase-OF in the range of less than 0.013 wt% of substrate. However, the increase of hydrolysis with the content of Lipase-OF ceased above 0.013 wt%. The experiments investigating the effect of environmental and composition factors on the hydrolysis of oils showed that the optimum temperature was 37$^{\circ}C$, the pH 7, the concentration of $Ca^{2+}\;or\;Mg^{2+}$ 100 ppm, the agitation speed 350 rpm, the weight ratio of water to oil 1 : 1, and the content of Lipase-OF 0.013 wt% of substrate.

  • PDF

Effects of NaCl Concentrations on Production and Yields of Fruiting Body of Oyster Mushrooms, Pleurotus spp. (NaCl의 농도가 느타리버섯 자실체 발생 및 수량에 미치는 영향)

  • Jhune, Chang-Sung;Sul, Hwa-Jin;Kong, Won-Sik;Yoo, Young-Bok;Cheong, Jong-Chun;Chun, Se-Chul
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2006
  • This studies investigated the effect of concentrations of sodium chloride (NaCl) on occurrence and growth of fruitbody in oyster mushrooms, Pleurotus spp. Our experiments divided into two parts. When the water contents in substrate were added with sodium chloride solution in cotton waste box cultivation as a first experiment, the growth of mushroom was damaged as the concentration was increased, even though there was a little difference according to the strains. The yield in 1.0% NaCl solution was decreased to 72% compared to non-treated plot while that in 3.0% solution was only 2% of the non-treated plot. Morphological characteristics of mushrooms cultivated in substrate with the different concentration of the solution showed different results. For example, the size and thickness of pilei were not influenced by NaCl concentration, but the length of stipes and individual weight were much influenced. In plastic box cultivation filled with cotton waste, watering treatment with the different concentrations of sodium chloride solution, the second experiment, did not show any difference according to the concentration until 1.0% solution but there was a little difference according to the strains. The productivity of fruitbody started to decrease at 2.0% of the solution and the yield and quality of mushroom in 3.0% solution treatment were generally low. After the second flush, days for mushroom sprouting were generally prolonged in proportion to the solution concentration. Taken altogether, the second experiment did not show a clear effect as the case of the first experiment.

Effect of Organic Matter Ratios in Substrate and Mulching Materials on Growth of Liatris spicata under Non-irrigated Green Roofs (무관수 옥상녹화에서 유기질 비료와 멀칭재에 따른 리아트리스(Liatris spicata) 생육 반응)

  • Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.130-137
    • /
    • 2012
  • This research evaluated the effectiveness of organic matter ratios in substrate and mulching materials under mn-irrigated condition green roofs by measuring the effects on growth of Liatris spicata. Four mulching materials were installed, i. e. nun-mulched control(CON), volcanic ash soils(VAS), non-woven black fabric mat(NBM) and pine bark(PAK). Three levels of organic maller volume percentage in an amended soil were evaluated, amended soil: organic matter=100:0($A_1O_0$), amended soil: organic matter=80:20($A_4O_1$) and amended soil: organic matter=50:50($A_1O_1$). Plant height, number of leaves, diameter of flower stalk, number of florets, chlorophyll contents, shoot fresh and dry weight were recorded from April to September, 2010, and survival rate was examined on May 2011 of the following year. In the $A_1O_0$, the number of leaves, number of florets and chlorophyll contents were higher in Liatris spicata grown on NBM than other mulching treatments. Especially, plant height, shoot fresh and dry weight were significantly higher. However, it resulted the lowest survival rate than other mulching treatments. 2. In the $A_4O_1$, the plant height, number of leaves, number of florets, shoot fresh and dry weight were higher than other mulching treatments, but there was no significant difference except for the plant height of Liatris spicata grown on NBM. The survival rate was decreased by 40~60%, compared with $A_1O_0$, after overwintering. 3. In the $A_1O_1$, the plant height, number of leaves, diameter of flower stalk, number of florets, chlorophyll contents, shoot fresh and dry weight were slightly higher than other mulching treatments, but there was no significant difference from Liatris spicata grown on NBM and VAS. The survival rate was observed by 0% over all mulching treatments after overwintering. Therefore, the non-woven black fabric mat(NBM) promoted the Liatris spicata's growth and flowering compared with other mulching treatments. However, the survival rate was decreased significantly, and the organic matter ratios were increased after overwintering under non-irrigated green roofs.

Effects of Initial Shoot, Root Length, and Acclimating Substrates on Survival Rate of Plantlets Regenerated from Somatic Embryos of Larix kaempferi (일본잎갈나무 체세포배 유래 식물체의 초기 신초와 뿌리 길이, 순화용 기질이 생존율에 미치는 영향)

  • Lee, Na Nyum;Yun, A Young;Kim, Ji Ah;Kim, Tae Dong;Kim, Yong Wook;Han, Sim Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • We analyzed the growth characteristics of each cell line and acclimating substrate of Larix kaempferi plantlets regenerated from somatic embryos, with the goal of increasing the survival rate during the acclimation phase. Somatic embryos from three embryogenic cell lines (L14-66, L16-18, and L17-B4) were used, and the acclimating substrates were commercial soils for Larix species (Larix-Soil) and horticultural corps (Hort-Soil), Elle-pot, and Peat-plug. The average initial shoot and root length was shortest in L14-66 and longest in L17-B4. The average survival rate by cell line was highest (87.0%) in L17-B4 and lowest (64.3%) for L14-66. Survival rates by substrate were highest in Elle-pot (88.5%) and Peat-plug (88.9%). The initial shoot length of the L14-66 plantlets was highly correlated with survival rates in the Larix-Soil (r = 0.852), Hort-Soil (r = 0.692), and Elle-pot (r = 0.867) substrates, but not in Peat-plug with high total nitrogen content. The initial shoot length of the L17-B4 plantlets was not correlated with the survival rate in any of the substrates. The initial root length of the L14-66 plantlets was highly related to survival rates in the Larix-Soil (r = 0.986), Elle-pot (r = 0.846), and Peat-plug (r = 0.802) substrates, and the survival rate of the plantlets was higher as the initial root length was longer. The initial root length of the L17-B4 plantlets was related to survival rate only in the Larix-Soil (r = 0.896) and Elle-pot (r = 0.696) substrates. In conclusion, to increase the survival rate of plantlets, root length should be considered over shoot length, and it is recommended to use substrates with high nitrogen content, such as Peat-plug, or to add fertilizer, during the acclimating process. In addition, in order to increase the survival rate, lines with high initial growth should be developed.